DAX Documentation
Release 2.11.1-dev0

Benjamin Yvernault, Brian Boyd, Stephen Damon, Andrew Plassa

Sep 19, 2023

CONTENTS

1 Quick Install 3
2 Versions and Installation 5
2.1 Installing DAX in a Virtual Environment o 5
2.1.1 Tableof Contents o i i i e e e e e e e e e e e 5

2.2 Installation of fs:fsData and proc:genProcData 7
221 OnXNAT VM: . . o o e e e 7

222 ONXNAT Webapp:« o v o i e e e e e e e e e e e e e 7

2.3 Source Documentation L. e e e e e 8
2.3.1 dax—Rootpackage e e e e e e 8

232 dax.task—Taskclass 8

233 dax.spiders—Spiderclass e 20

2.3.4 dax.processors —Processorclass e 20

2.3.5 dax.log-—Loggingutility e e e 21

2.3.6 dax.bin — Responsible for launching, building and updatinga Task 22

2.3.7 dax.XnatUtils — Collection of utilities for upload/download and general access 24

24 DAXManager e e 34
24.1 Tableof Contents: L i e e e e e e e e e 34

242 DAX 1. . o e 35

243 LDAX . . e 37

2.5 Contributors e e e e e e 39
2.6 HowToContribute L e e e e e e e e e 39
2.7 FAQ . . o o 40
2.8 DAXProCessors i e e e e e e 40
2.8.1 About 40

2.8.2 Processor Repos L e e e e e e e e 40

2.83 OVerview e e 41

2.84 A“Simple” Example e e 41

2.8.5 Partsofthe Processor YAML 42

2.8.6 INPULS . . . o e e e e e e e e e e e e e e e e 42

2.87 Versioning e e e e e e e e e e e e 44

2.8.8 Notes on Singularity run options L e 44

2.9 DAXProcessors, version 3 e e e e e e e e e 45
290.1 About e 45

2.9.2 Processor Repos e e e e e e e e e 45

203 OVEIVIEW . . . v vt e e e 45

294 ABasicExample e e 45

2.9.5 Partsof the Processor YAML e 47

29.6 inputs (required) 47

297 Versioning e e 49

2.9.8 Notes on singularity options L. L 49

2.9.9 Subject-Level Processors o o e e e e e e e e e e e 50

2.10 Assessorsin VUIIS XNAT o o e e 51
2.11 DAX Command Line Tools e 51
2.11.1 Tableof Contents o i i it e e e e e e e e 51
2.11.2 Listofthe Tools L 52

2.12 DAX Executables e e e 73
2.12.1 Tableof Contents o i e e e e e e 73
2.12.2 How Doesit Work? e 73
2,123 DAX Settings e e 73
2.12.4 How to Write a ProjectSettings.yaml File 74
2,125 DAXBuild 75
2.12.6 DAX Update o i e e e e e e e e e e e 75
2.1277 DAXLaunch e 75
2.12.8 DAX Upload e 75
2,129 DAXManager. e e 75

2.13 Manage aProject e e e 75
2.13.1 Tableof Contents ot v i it e e e e e e e e e e 75
2.13.2 Unable to Read Experiments for Project: XXXXXXXX 79
2.133 RestartingalJob 80
2.13.4 Project Settings Files L 80
2.13.5 Adding Directories Caused by OSError (only relevantto LDAX) 80
2.13.6 Settings Directory is Missing from tmp Folder (only relevant to LDAX) 80
2.13.7 Verifying the Spider is Waiting to get Uploaded to XNAT 80

2.14 BIDSMapping: Walkthrough Tutorial 81
2.14.1 Introduction oL e e e e e e e e e e e 81
2.142 Table of Contents o ot i e e e e e e 81
2.14.3 Additional Useful BIDSMapping Tool Options 87
Python Module Index 91
Index 93

DAX Documentation, Release 2.11.1-dev0

DAX is Distributed Automation for XNAT
DAX allows you to:
* store analyzed imaging data on XNAT (datatypes)
* extract information from XNAT via scripts (Xnat_tools)

* run pipelines on your data in XNAT via a cluster (processors)

CONTENTS 1

http://xnat.org/

DAX Documentation, Release 2.11.1-dev0

2 CONTENTS

CHAPTER
ONE

QUICK INSTALL

Create a python3 virtual environment with dax and all dependencies.

python3 -m venv daxvenv
source daxvenv/bin/activate
pip install dax

Configure an environment variable named XNAT_HOST set to the full url of your xnat server. This can be incuded in
your .bashrc/.bash_profile file.

[export XNAT_HOST=https://central.xnat.org

Configure your credentials in a file named “.netrc” in your home directory.

machine <SERVER>
login <USER>
password <PASSWORD>

Here SERVER is the server name only. For example, central.xnat.org, not https://xnat.website.com/xnat.

https://docs.python.org/3/library/venv.html
https://xnat.website.com/xnat

DAX Documentation, Release 2.11.1-dev0

4 Chapter 1. Quick Install

CHAPTER
TWO

VERSIONS AND INSTALLATION

Our currently running versions of dax are:
e Dax 2-2.2.1- As of July §, 2021
— Used for most purposes
* LDAX latest - 0.7.10 - As of October 7, 2020
— Legacy Dax - Please use DAX 2

These can be verified with

dax version

or

pip freeze | grep dax

or

python3 -m pip freeze | grep dax

To install please reference our Install Page

Contents:

2.1 Installing DAX in a Virtual Environment

2.1.1 Table of Contents

1. Setup
2. Create the Virtual Environment
3. Install DAX

4. Verify Installation

https://dax.readthedocs.io/en/latest/installing_dax_in_a_virtual_environment.html

DAX Documentation, Release 2.11.1-dev0

Setup

To install miniconda3 go to https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html . Follow the
procedure described on the miniconda site to install for your OS. It is very important that you follow the directions
closely and not forget to source conda. The main idea is to download the Python 3.7 or newer bash file and open the
terminal (using 3.8 and MacOS as an example here). Run the following where the file was downloaded:

[bash Miniconda3-latest-MacOSX-x86_64.sh J

Follow the prompts until miniconda is installed. Now, source conda and add the path to .bash_profile. Then close and
reopen terminal. To display a list of installed packages:

[conda list }

Create the Virtual Environment

DAX is to be installed only on virtual environments on Python 3. To create a new environment in Miniconda with
Python 3.8:

[conda create -n daxvenv python=3.8]

which can then be activated or deactivated with:

conda activate daxvenv # Activation of environment
conda deactivate # Deactivation of environment

After activating the new environment, git version 2.11+ should be installed.

» For ACCRE users, refer to the instructions here: https://dax.readthedocs.io/en/latest/requirements_for_dax_on_
accre.html

* Otherwise, install git using these instructions: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Install DAX

Once the virtual environment with Python 3 is created and the correct version of git is installed, you’ll need to install
dax itself

[(daxvenv) $ pip install dax J

Configure an environment variable named XNAT_HOST set to the full url of your xnat server. This can be incuded in
your startup file (such as .bashrc or .bash_profile).

[(daxvenv) $ export XNAT_HOST=https://central.xnat.org]

Configure your credentials in a file named “.netrc” in your home directory.

machine <SERVER>
login <USER>
password <PASSWORD>

Here SERVER is the server name only. For example, central.xnat.org, not https://xnat.website.com/xnat. Make sure
that the xnat_host is formatted similarly to ‘xnat.website.com’ NOT ‘https://xnat.website.com/xnat’ The full url WILL
NOT WORK properly.

6 Chapter 2. Versions and Installation

https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html
https://dax.readthedocs.io/en/latest/requirements_for_dax_on_accre.html
https://dax.readthedocs.io/en/latest/requirements_for_dax_on_accre.html
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://xnat.website.com/xnat
https://xnat.website.com/xnat

DAX Documentation, Release 2.11.1-dev0

Verify Installation

Next, run XnatCheckLogin, which will verify that you can log on successfully.

(daxvenv) $ XnatCheckLogin

Checking your settings for XNAT

No host specified, using XNAT_HOST environment variable.

Checking login for host=https://central.xnat.org

Checking connection:host=https://central.xnat.org, user=someusername
--> Good login.

2.2 Installation of fs:fsData and proc:genProcData

Prerequisites:

« install an XNAT instance https://wiki.xnat.org/documentation/getting-started-with-xnat

2.2.1 On XNAT VM:

1) Make a BACKUP of your $XNAT_HOME, postgres db, and tomcat deployment
2) Stop tomcat
3) Copy plugins to XNAT
Copy the files dax-plugin-fsData-X.Y.Z.jar and dax-plugin-genProcData-X.Y.Z.jar to ${XNAT_HOME}/plugins

The plugins folder is located in the dax package at the path dax/misc/xnat-plugins/files. You can download the files
from github repository: https://github.com/VUIIS/dax .

4) Start tomcat and confirm that plugins are installed

2.2.2 ON XNAT webapp:

1) Log onto XNAT as admin

2) click Administer > Data types

3) click Setup Additional Data Type

4) for fs:fsData (NOTE: the fs:fsData datatype is deprecated. Install only if the need is known to exist)
4.a) select fs:fsData and valid without adding anything at first.
4.b) Come back to the new types and edit the fields:

enter "FreeSurfer" in both Singular Name and Plural Name field
enter "FS" in Code field

4.c) Edit the “Available Report Actions” by adding delete if you want to be able to delete assessor with the following
values:

2.2. Installation of fs:fsData and proc:genProcData 7

https://wiki.xnat.org/documentation/getting-started-with-xnat
https://github.com/VUIIS/dax

DAX Documentation, Release 2.11.1-dev0

Remove Name: delete
Display Name: Delete

Grouping:

Image: delete.gif
Popup:

Secure Access: delete
Feature:

Additional Parameters:
Sequence: 4

4.d) click submit and then accept defaults for subsequent screens

5) for proc:genProcData
5.a) select proc:genProcData and valid without adding anything at first.
5.b) Come back to the new types and edit the fields:

enter "Processing” in both Singular Name and Plural Name field
enter "Proc" in Code field

5.c) Edit the “Available Report Actions” by adding delete if you want to be able to delete assessor with the following
values:

Remove Name: delete
Display Name: Delete

Grouping:

Image: delete.gif
Popup:

Secure Access: delete
Feature:

Additional Parameters:
Sequence: 4

5.d) click submit and then accept defaults for subsequent screens

You are now ready to use the two assessor types fs:fsData and proc:genProcData

2.3 Source Documentation

2.3.1 dax — Root package

2.3.2 dax.task — Task class

Task object to generate / manage assessors and cluster.

class dax.task.ClusterTask(assr_label, upload_dir, diskq)

Class Task to generate/manage the assessor with the cluster

batch_path()
Method to return the path of the PBS file for the job
Returns

A string that is the absolute path to the PBS file that will be submitted to the scheduler for
execution.

8 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

build_commands ()
Call the get_cmds method of the class Processor.

Parameters

jobdir — Fully qualified path where the job will run on the node. Note that this is likely to
start with /tmp on most grids.

Returns
A string that makes a command line call to a spider with all args.

build_task()
Method to build a job
check_date()
Sets the job created date if the assessor was not made via dax_build

check_job_usage()

The task has now finished, get the amount of memory used, the amount of

walltime used, the jobid of the process, the node the process ran on, and when it started from the
scheduler. Set these values locally

Returns
None

check_running ()
Check to see if a job specified by the scheduler ID is still running

Parameters
jobid — The ID of the job in question assigned by the scheduler.

Returns

A String of JOB_RUNNING if the job is running or enqueued and JOB_FAILED if the ready
flag (see read_flag_exists) does not exist in the assessor label folder in the upload directory.

commands (jobdir)

Call the get_cmds method of the class Processor.

Parameters

jobdir — Fully qualified path where the job will run on the node. Note that this is likely to
start with /tmp on most grids.

Returns
A string that makes a command line call to a spider with all args.

get_createdate()

Get the date an assessor was created

Returns
String of the date the assessor was created in “% Y-%m-%d” format

get_job_status()
Get the status of a job given its jobid as assigned by the scheduler

Parameters
jobid — job id assigned by the scheduler

Returns
string from call to cluster.job_status or UNKNOWN.

23.

Source Documentation 9

DAX Documentation, Release 2.11.1-dev0

get_job_usage()

Get the amount of memory used, the amount of walltime used, the jobid
of the process, the node the process ran on, and when it started from the scheduler.

Returns
List of strings. Memory used, walltime used, jobid, node used, and start date

get_jobid()
Get the jobid of an assessor as stored in local cache

Returns
string of the jobid

get_jobnode()

Gets the node that a process ran on

Returns
String identifying the node that a job ran on

get_jobstartdate()
Get the date that the job started

Returns
String of the date that the job started in “% Y-%m-%d” format

get_memused()

Get the amount of memory used for a process

Returns
String of how much memory was used

get_processor_name ()
Get the name of the Processor for the Task.

Returns
String of the Processor name.

get_processor_version()
Get the version of the Processor.

Returns
String of the Processor version.

get_qcstatus()
Get the gcstatus

get_status()
Get the procstatus

Returns
The string of the procstatus

get_statuses()
Get the procstatus, qcstatus, and job id of an assessor
get_walltime()

Get the amount of walltime used for a process

Returns
String of how much walltime was used for a process

10 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

is_open()

Check to see if a task is still in “Open” status as defined in
OPEN_STATUS_LIST.

Returns
True if the Task is open. False if it is not open

launch (force_no_qgsub=False)
Method to launch a job on the grid

Raises
cluster.ClusterLaunchException if the jobid is 0 or empty as returned by pbs.submit() method

Returns
True if the job failed

outlog_path()
Method to return the path of outlog file for the job

Returns
A string that is the absolute path to the OUTLOG file.

processor_spec_path()
Method to return the path of processor file for the job

Returns
A string that is the absolute path to the file.

reproc_processing ()
Raises
NotImplementedError

Returns
None

set_createdate(date_str)
Set the date of the assessor creation to user passed value

Parameters
date_str — String of the date in “%Y-%m-%d” format

Returns
String of today’s date in “% Y-%m-%d” format

set_createdate_today()

Set the date of the assessor creation to today

Returns
String of todays date in “% Y-%m-%d” format

set_jobid(jobid)
Set the job ID of the assessor

Parameters
jobid — The ID of the process assigned by the grid scheduler

Returns
None

23.

Source Documentation 11

DAX Documentation, Release 2.11.1-dev0

set_jobnode (jobnode)

Set the value of the the node that the process ran on on the grid

Parameters
jobnode — String identifying the node the job ran on

Returns
None

set_jobstartdate (date_str)

Set the date that the job started on the grid based on user passed
value

Parameters
date_str — Datestring in the format “% Y-%m-%d” to set the job starte date to
Returns

None

set_launch (jobid)
Set the date that the job started and its associated ID. Additionally, set the procstatus to JOB_RUNNING

Parameters
jobid — The ID of the process assigned by the grid scheduler

Returns
None

set_memused (memused)

Set the amount of memory used for a process

Parameters
memused — String denoting the amount of memory used

Returns
None

set_proc_and_qc_status (procstatus, gcstatus)
Set the procstatus and qcstatus of the assessor
set_qcstatus (gcestatus)

Set the gcstatus of the assessor

Parameters
gcstatus — String to set the qcstatus to

Returns
None

set_status(status)

Set the procstatus of an assessor on XNAT

Parameters
status — String to set the procstatus of the assessor to

Returns
None

12 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

set_walltime (walltime)

Set the value of walltime used for an assessor

Parameters
walltime — String denoting how much time was used running the process.

Returns
None

undo_processing()

Unset the job ID, memory used, walltime, and jobnode information
for the assessor on XNAT

Except
pyxnat.core.errors.DatabaseError when attempting to delete a resource
Returns

None

update_status()
Update the status of a Cluster Task object.

Returns
the “new” status (updated) of the Task.

upload_outlog_dir()
Method to return the path of outlog file for the job

Returns
A string that is the absolute path to the OUTLOG file.

upload_pbs_dir()
Method to return the path of dir for the PBS

Returns
A string that is the directory path for the PBS dir

class dax.task.Task(processor, assessor, upload_dir)
Class Task to generate/manage the assessor with the cluster
check_date()

Sets the job created date if the assessor was not made through
dax_build

Returns
Returns if get_createdate() is != “°, sets date otherwise

check_job_usage()

The task has now finished, get the amount of memory used, the amount of
walltime used, the jobid of the process, the node the process ran on, and when it started from the
scheduler. Set these values on XNAT

Returns
None

2.3. Source Documentation 13

DAX Documentation, Release 2.11.1-dev0

check_running (jobid=None)
Check to see if a job specified by the scheduler ID is still running

Parameters
jobid — The ID of the job in question assigned by the scheduler.

Returns
A String of JOB_RUNNING if the job is running or enqueued and JOB_FAILED if the ready
flag (see read_flag_exists) does not exist in the assessor label folder in the upload directory.

commands (jobdir)

Call the get_cmds method of the class Processor.

Parameters
jobdir — Fully qualified path where the job will run on the node. Note that this is likely to
start with /tmp on most grids.

Returns
A string that makes a command line call to a spider with all args.

get_createdate()
Get the date an assessor was created

Returns
String of the date the assessor was created in “% Y-%m-%d” format

get_job_status (jobid=None)
Get the status of a job given its jobid as assigned by the scheduler

Parameters
jobid — job id assigned by the scheduler

Returns
string from call to cluster.job_status or UNKNOWN.

get_job_usage()

Get the amount of memory used, the amount of walltime used, the jobid
of the process, the node the process ran on, and when it started from the scheduler.

Returns
List of strings. Memory used, walltime used, jobid, node used, and start date

get_jobid()
Get the jobid of an assessor as stored on XNAT

Returns
string of the jobid

get_jobnode()
Gets the node that a process ran on

Returns
String identifying the node that a job ran on

get_jobstartdate()
Get the date that the job started

Returns
String of the date that the job started in “% Y-%m-%d” format

14 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

get_memused()

Get the amount of memory used for a process

Returns
String of how much memory was used

get_processor_name()

Get the name of the Processor for the Task.

Returns
String of the Processor name.

get_processor_version()

Get the version of the Processor.

Returns
String of the Processor version.

get_qcstatus()
Get the gcstatus of the assessor

Returns

A string of the qcstatus for the assessor if it exists. If it does not, it returns
DOES_NOT_EXIST. The else case returns an UNKNOWN xsiType with the xsiType of the
assessor as stored on XNAT.

get_status(Q)
Get the procstatus of an assessor

Returns
The string of the procstatus of the assessor. DOES_NOT_EXIST if the assessor does not exist

get_statuses(cached_sessions=None)

Get the procstatus, qcstatus, and job id of an assessor

Returns
Serially ordered strings of the assessor procstatus, qcstatus, then jobid.

get_walltime()

Get the amount of walltime used for a process

Returns
String of how much walltime was used for a process

is_open()

Check to see if a task is still in “Open” status as defined in
OPEN_STATUS_LIST.

Returns
True if the Task is open. False if it is not open

launch (jobdir, job_email=None, job_email_options='FAIL', job_rungroup=None, xnat_host=None,
writeonly=False, pbsdir=None, force_no_gsub=False)

Method to launch a job on the grid
Parameters
¢ jobdir — absolute path where the data will be stored on the node

e job_email — who to email if the job fails

23.

Source Documentation 15

DAX Documentation, Release 2.11.1-dev0

* job_email_options — grid-specific job email options (e.g., fails, starts, exits etc)
¢ job_rungroup - grid-specific group to run the job under

e xnat_host — set the XNAT_HOST in the PBS job

* writeonly — write the job files without submitting them

¢ pbsdir — folder to store the pbs file

¢ force_no_gsub — run the job locally on the computer (serial mode)

Raises
cluster.ClusterLaunchException if the jobid is O or empty as returned by pbs.submit() method

Returns
True if the job failed

outlog_path()
Method to return the path of outlog file for the job

Returns
A string that is the absolute path to the OUTLOG file.

pbs_path (writeonly=False, pbsdir=None)
Method to return the path of the PBS file for the job

Parameters
e writeonly — write the job files without submitting them in TRASH
 pbsdir — folder to store the pbs file

Returns
A string that is the absolute path to the PBS file that will be submitted to the scheduler for
execution.
ready_flag_exists()
Method to see if the flag file <UPLOAD_DIR>/<ASSESSOR_LABEL>/READY_TO_UPLOAD.txt exists

Returns
True if the file exists. False if the file does not exist.

reproc_processing()
If the procstatus of an assessor is REPROC on XNAT, rerun the assessor.

Returns
None

set_createdate(date_str)
Set the date of the assessor creation to user passed value

Parameters
date_str — String of the date in “%Y-%m-%d” format

Returns
String of today’s date in “% Y-%m-%d” format

set_createdate_today()

Set the date of the assessor creation to today

Returns
String of todays date in “% Y-%m-%d” format

16 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

set_jobid (jobid)
Set the job ID of the assessor on XNAT

Parameters
jobid — The ID of the process assigned by the grid scheduler

Returns
None

set_jobnode (jobnode)

Set the value of the the node that the process ran on on the grid

Parameters
jobnode — String identifying the node the job ran on

Returns
None

set_jobstartdate (date_str)

Set the date that the job started on the grid based on user passed
value

Parameters
date_str — Datestring in the format “%Y-%m-%d” to set the job starte date to
Returns

None

set_jobstartdate_today()
Set the date that the job started on the grid to today

Returns
call to set_jobstartdate with today’s date

set_launch (jobid)

Set the date that the job started and its associated ID on XNAT. Additionally, set the procstatus to
JOB_RUNNING

Parameters
jobid — The ID of the process assigned by the grid scheduler

Returns
None

set_memused (memused)
Set the amount of memory used for a process

Parameters
memused — String denoting the amount of memory used

Returns
None

set_proc_and_qc_status (procstatus, gcstatus)

Set the procstatus and qcstatus of the assessor
Parameters
» procstatus — String to set the procstatus of the assessor to

» gcstatus — String to set the qcstatus of the assessor to

. Source Documentation 17

DAX Documentation, Release 2.11.1-dev0

Returns
None

set_qcstatus (gcestatus)
Set the gcstatus of the assessor

Parameters
gcstatus — String to set the gcstatus to

Returns
None

set_status (status)
Set the procstatus of an assessor on XNAT

Parameters
status — String to set the procstatus of the assessor to

Returns
None

set_walltime (walltime)
Set the value of walltime used for an assessor on XNAT

Parameters
walltime — String denoting how much time was used running the process.

Returns
None

undo_processing()

Unset the job ID, memory used, walltime, and jobnode information
for the assessor on XNAT

Except
pyxnat.core.errors.DatabaseError when attempting to delete a resource

Returns
None

update_status()
Update the satus of a Task object.
Returns
the “new” status (updated) of the Task.
class dax.task.XnatTask(processor, assessor, upload_dir, diskq)
Class Task to generate/manage the assessor with the cluster

batch_path()
Method to return the path of the PBS file for the job

Returns
A string that is the absolute path to the PBS file that will be submitted to the scheduler for
execution.
build_commands (assr, sessions, jobdir, resdir)

Call the build_cmds method of the class Processor.

18 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

Parameters
jobdir — Fully qualified path where the job will run on the node. Note that this is likely to
start with /tmp on most grids.

Returns
A string that makes a command line call to a spider with all args.

build_task(assr, sessions, jobdir, job_email=None, job_email_options='FAIL', job_rungroup=None,
xnat_host=None)
Method to build a job

check_job_usage()

The task has now finished, get the amount of memory used, the amount of
walltime used, the jobid of the process, the node the process ran on, and when it started from the
scheduler. Set these values on XNAT

Returns
None

check_running ()
Check to see if a job specified by the scheduler ID is still running

Parameters
jobid — The ID of the job in question assigned by the scheduler.

Returns
A String of JOB_RUNNING if the job is running or enqueued and JOB_FAILED if the ready
flag (see read_flag_exists) does not exist in the assessor label folder in the upload directory.

get_job_status()
Get the status of a job given its jobid as assigned by the scheduler

Parameters
jobid — job id assigned by the scheduler

Returns
string from call to cluster.job_status or UNKNOWN.

launch()

Method to launch a job on the grid
outlog_path()

Method to return the path of outlog file for the job

Returns
A string that is the absolute path to the OUTLOG file.

processor_spec_path()
Method to return the path of processor file for the job

Returns
A string that is the absolute path to the file.

set_launch (jobid)
Set the date that the job started and its associated ID on XNAT. Additionally, set the procstatus to
JOB_RUNNING

Parameters
jobid — The ID of the process assigned by the grid scheduler

23.

Source Documentation 19

DAX Documentation, Release 2.11.1-dev0

Returns
None

update_status()
Update the satus of an XNAT Task object.

Returns
the “new” status (updated) of the Task.

2.3.3 dax.spiders — Spider class

2.3.4 dax.processors — Processor class

Processor class define for Scan and Session.

class dax.processors.AutoProcessor (xnat, yaml_source, user_inputs=None)
Auto Processor class for AutoSpider using YAML files
get_assessor_input_types()

Enumerate the assessor input types for this. The default implementation returns an empty collection; over-
ride this method if you are inheriting from a non-yaml processor. :return: a list of input assessor types

get_cmds (assr, jobdir)
Method to generate the spider command for cluster job.
Parameters
* assessor — pyxnat assessor object
¢ jobdir — jobdir where the job’s output will be generated
Returns
command to execute the spider in the job script

get_proctype()
Return the processor name for this processor. Override this method if you are inheriting from a non-yaml
processor. :return: the name of the processor type

parse_session(csess, sessions, pets=None)

Method to run the processor parser on this session, in order to calculate the pattern matches for this processor
and the sessions provided :param csess: the active session. For non-longitudinal studies, this is the session
that the pattern matching is performed on. For longitudinal studies, this is the ‘current’ session from which
all prior sessions are numbered for the purposes of pattern matching :param sessions: the full, time-ordered
list of sessions that should be considered for longitudinal studies. :return: None

class dax.processors.Processor (walltime_str, memreq_mb, spider_path, version=None, ppn=1, env=None,
suffix_proc="", xsitype="proc:genProcData’, job_template=None)
Base class for processor
build_cmds (cobj, dir)

Build the commands that will go in the PBS/SLURM script :raises: NotImplementedError if not overridden
from base class. :return: None

default_settings_spider (spider_path)
Get the default spider version and name

Parameters
spider_path — Fully qualified path and file of the spider

20 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

Returns
None

get_assessor_input_types()

Enumerate the assessor input types for this. The default implementation returns an empty collection; over-
ride this method if you are inheriting from a non-yaml processor. :return: a list of input assessor types

get_proctype()

Return the processor name for this processor. Override this method if you are inheriting from a non-yaml
processor. :return: the name of the processor type

set_spider_settings(spider_path, version)
Method to set the spider version, path, and name from filepath
Parameters
¢ spider_path — Fully qualified path and file of the spider
¢ version - version of the spider

Returns
None

should_run()
Responsible for determining if the assessor should shouw up in session.

Raises
NotImplementedError if not overridden.

Returns
None

2.3.5 dax.log — Logging utility

dax.log.setup_critical_logger (name, logfile)
Sets up the critical logger

Parameters
* name — Name of the logger
* logfile - file to store the log to. sys.stdout if no file define

Returns
logger object

dax.log.setup_debug_logger (name, logfile)
Sets up the debug logger

Parameters
* name — Name of the logger
» logfile —file to store the log to. sys.stdout if no file define

Returns
logger object

dax.log.setup_error_logger (name, logfile)
Sets up the error logger

Parameters

2.3. Source Documentation 21

DAX Documentation, Release 2.11.1-dev0

* name — Name of the logger
* logfile - file to store the log to. sys.stdout if no file define

Returns
logger object

dax.log.setup_info_logger (name, logfile)
Sets up the info logger

Parameters
* name — Name of the logger
» logfile —file to store the log to. sys.stdout if no file define

Returns
logger object

dax.log.setup_warning_logger (name, logfile)
Sets up the warning logger

Parameters
* name — Name of the logger
» logfile —file to store the log to. sys.stdout if no file define

Returns
logger object

2.3.6 dax.bin — Responsible for launching, building and updating a Task

File containing functions called by dax executables

dax.bin.build(settings_path, logfile, debug, projects=None, sessions=None, mod_delta=None,
proj_lastrun=None, start_sess=None)

Method that is responsible for running all modules and putting assessors
into the database
Parameters
» settings_path — Path to the project settings file
» logfile - Full file of the file used to log to
* debug - Should debug mode be used
» projects — Project(s) that need to be built
e sessions — Session(s) that need to be built
Returns

None

dax.bin.check_default_keys (yaml_file, doc)

Static method to raise error if key not found in dictionary from yaml file. :param yaml_file: path to yaml file
defining the processor :param doc: doc dictionary extracted from the yaml file

22 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

dax.bin.launch_jobs (settings_path, logfile, debug, projects=None, sessions=None, writeonly=False,
pbsdir=None, force_no_gsub=False)

Method to launch jobs on the grid
Parameters

* settings_path — Path to the project settings file
» logfile - Full file of the file used to log to
* debug - Should debug mode be used
* projects — Project(s) that need to be launched
» sessions — Session(s) that need to be updated
* writeonly — write the job files without submitting them
 pbsdir — folder to store the pbs file
» force_no_gsub - run the job locally on the computer (serial mode)

Returns
None

dax.bin.load_from_f£file (filepath, args, logger, singularity_imagedir=None, job_template=None)

Check if a file exists and if it’s a python file :param filepath: path to the file to test :return: True the file pass the
test, False otherwise

dax.bin.raise_yaml_error_if_no_key(doc, yaml_file, key)

Method to raise an execption if the key is not in the dict :param doc: dict to check :param yaml_file: YAMLfile
path :param key: key to search

dax.bin.read_yaml_settings(yaml_file, logger)
Method to read the settings yaml file and generate the launcher object.

Parameters
yaml_file — path to yaml file defining the settings

Returns
launcher object

dax.bin.set_logger (logfile, debug)
Set the logging depth

Parameters
» logfile - File to log output to
* debug - Should debug depth be used?

Returns
logger object

dax.bin.undo_processing(assessor_label, logger=None)
Unset job information for the assessor on XNAT, Delete files, set to run.

Returns
None

dax.bin.update_tasks (settings_path, logfile, debug, projects=None, sessions=None)
Method that is responsible for updating a Task.

Parameters

2.3. Source Documentation 23

DAX Documentation, Release 2.11.1-dev0

» settings_path — Path to the project settings file

* logfile - Full file of the file used to log to
* debug — Should debug mode be used

» projects — Project(s) that need to be launched

* sessions - Session(s) that need to be updated

Returns
None

2.3.7 dax.XnatUtils — Collection of utilities for upload/download and general ac-

cess

XnatUtils contains functions to interface with XNAT using Pyxnat.

class dax.XnatUtils.AssessorHandler (label)

Class to intelligently deal with the Assessor labels. Make the splitting of the strings easier.

get_proctype()
Get the proctype from the assessor label

Returns
The proctype for the assessor

get_project_id(Q)
Get the project ID from the assessor label

Returns
The XNAT project label

get_scan_id(Q)

Get the scan ID from teh assessor label

Returns
The scan id for the assessor label

get_session_label)
Get the session label from the assessor label

Returns
The XNAT session label

get_subject_label ()

Get the subject label from the assessor label

Returns
The XNAT subject label

is_validQO

Check to see if we have a valid assessor label (aka not None)

Returns
True if valid, False if not valid

select_assessor (intf)

Run Interface.select() on the assessor label

24

Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

Parameters
intf — pyxnat.Interface object

Returns
The pyxnat EObject of the assessor

class dax.XnatUtils.CachedImageAssessor (intf, assr_element, parent)
Class to cache the XML information for an assessor on XNAT
get (name)

Get the value of a variable associated with the assessor

Parameters
name — Variable name to get the value of

Returns
Value of the variable, otherwise .

get_in_resources()

Get a list of dictionaries of info for the CachedResource objects
for “in” type

Returns
List of dictionaries of info for the CachedResource objects for “in” type

get_out_resources()

Get a list of dictionaries of info for the CachedResource objects
for “out” type

Returns
List of dictionaries of info for the CachedResource objects for “out” type

get_resources()

Makes a call to get_out_resources.

Returns
List of dictionaries of info for the CachedResource objects for “out” type

in_resources()

[73e 1]

Get a list of CachedResource objects for “in” type

Returns
List of CachedResource objects for “in” type

info()
Get a dictionary of information associated with the assessor

Returns
None

label O

Get the label of the assessor

Returns
String of the assessor label

2.3. Source Documentation 25

DAX Documentation, Release 2.11.1-dev0

out_resources()
Get a list of CachedResource objects for “out” type

Returns
List of CachedResource objects for “out” type

parent()
Get the parent element of the assessor (session)

Returns
The session element XML string

class dax.XnatUtils.CachedImageScan(intf, scan_element, parent)
Class to cache the XML information for a scan on XNAT

get (name)

Get the value of a variable associated with a scan.

Parameters
name — Name of the variable to get the value of

Returns
Value of the variable if it exists, or ¢’ otherwise.

get_resources()

Get a list of dictionaries of info for each CachedResource.

Returns
List of dictionaries of infor for each CachedResource.

info()
Get lots of variables assocaited with this scan.

Returns
Dictionary of infomation about the scan.

label O
Get the ID of the scan

Returns
String of the scan ID

parent ()
Get the parent of the scan

Returns
XML String of the scan parent

resources()

Get a list of the CachedResource (s) associated with this scan.

Returns
List of the CachedResource (s) associated with this scan.

session()

Get the session associated with this object :return: session asscoiated with this object

class dax.XnatUtils.CachedImageSession(intf, proj, subj, sess)

Enumeration for assessors function, to control what assessors are returned

26 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

assessors (select=(0,))
Get a list of CachedImageAssessor objects for the XNAT session

Returns
List of CachedImageAssessor objects for the session.

full_object()
Return a the full pyxnat Session object of this sessions

Returns
pyxnat Session object

get (name)
Get the value of a variable name in the session

Parameters
name — The variable name that you want to get the value of

Returns
The value of the variable or “’ if not found.

get_resources()

Return a list of dictionaries that correspond to the information
for each resource

Returns
List of dictionaries

has_shared_project()
Get the project if shared.

Returns
project_shared_id if shared, None otherwise

info(Q
Get a dictionary of lots of variables that correspond to the session

Returns
Dictionary of variables

label O
Get the label of the session

Returns
String of the session label

resources ()

Get a list of CachedResource objects for the session

Returns
List of CachedResource objects for the session

scans()
Get a list of CachedImageScan objects for the XNAT session

Returns
List of CachedImageScan objects for the session.

23.

Source Documentation

27

DAX Documentation, Release 2.11.1-dev0

session()

Get the session associated with this object :return: session asscoiated with this object

class dax.XnatUtils.CachedResource (element, parent)

Class to cache resource XML info on XNAT

get (name)

Get the value of a variable associated with the resource

Parameters
name — Variable name to get the value of

Returns
The value of the variable, <’ otherwise.

info(Q
Get a dictionary of information relating to the resource

Returns
dictionary of information about the resource.

label O

Get the label of the resource

Returns
String of the label of the resource

parent()
Get the resource parent XML string

Returns
The resource parent XML string

class dax.XnatUtils.InterfaceTemp (xnat_host=None, xnat_user=None, xnat_pass=None, smtp_host=None,

timeout_emails=None, xnat_timeout=300, xnat_retries=4,
xnat_wait=600)

Extends the pyxnat.Interface class to make a temporary directory, write the
cache to it and then blow it away on the Interface.disconnect call() NOTE: This is deprecated in pyxnat
1.0.0.0

Using netrc to get username password if not given.
authenticate()
Authenticate to XNAT.

Connect to XNAT and try to Disconnect the JSESSION before reconnecting. Raise XnatAuthentification-
Error if it failes.

Returns
True or False

connect()
Connect to XNAT.

disconnect()
Tell XNAT to disconnect this session

28

Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

get_assessor_out_resources (projectid, subjectid, sessionid, assessorid)

Gets a list of all of the resources for an assessor associated to a

session/subject/project requested by the user.
Parameters

e (string) (assessorid) — ID of a project on XNAT

e (string) - ID/label of a subject

¢ (string) — ID/label of a session

¢ (string) - ID/label of an assessor to get resources for
Returns

List of resources for the assessor

get_assessor_path(project, subject, session, assessor)

Given project, subject, session, assessor (strings), returns assessor path (string)

get_assessor_resource_path(project, subject, session, assessor, resource)

Given project, subject, session, assessor, resource (strings), returns assessor resource path (string)

get_assessors (projectid, subjectid, sessionid)

List all the assessors that you have access to based on passed
session/subject/project.

Parameters
¢ (string) (sessionid) — ID of a project on XNAT
e (string) - ID/label of a subject
¢ (string) — ID/label of a session

Returns
List of all the assessors

get_experiment_path(project, subject, session)

Given project, subject, session (strings), returns session path (string)
get_project_assessors (projectid)

List all the assessors that you have access to based on passed project.

Parameters
(string) (projectid) —ID of a project on XNAT

Returns
List of all the assessors for the project

get_project_path(project)
Given project (string), returns project path (string)

get_project_scans (project_id, include_shared=True)

List all the scans that you have access to based on passed project.
Parameters
e (string) (projectid) - ID of a project on XNAT

¢ (boolean) (include_shared) — include the shared data in this project

. Source Documentation 29

DAX Documentation, Release 2.11.1-dev0

Returns
List of all the scans for the project

get_resources (project_id)

Given project (string), return list of project’s resources

get_scan_path(project, subject, session, scan)

Given project, subject, session, scan (strings), returns scan path (string)

get_scan_resource_path(project, subject, session, scan, resource)

Given project, subject, session, scan, resource (strings), returns scan resource path (string)

get_scan_resources (projectid, subjectid, sessionid, scanid)

Gets a list of all of the resources for a scan associated to a
session/subject/project requested by the user.
Parameters

e (string) (scanid) — ID of a project on XNAT

¢ (string) - ID/label of a subject

¢ (string) — ID/label of a session

¢ (string) - ID of a scan to get resources for
Returns

List of resources for the scan

get_scans (projectid, subjectid, sessionid)

List all the scans that you have access to based on passed
session/subject/project.
Parameters
e (string) (sessionid) — ID of a project on XNAT
e (string) - ID/label of a subject
¢ (string) - ID/label of a session
Returns

List of all the scans

get_session_resources (projectid, subjectid, sessionid)

Gets a list of all of the resources for a session associated to a
subject/project requested by the user
Parameters
e (string) (sessionid) - ID of a project on XNAT
¢ (string) - ID/label of a subject
¢ (string) - ID/label of a session to get resources for

Returns
List of resources for the session

30 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

get_sessions (projectid=None, subjectid=None)

List all the sessions either:

1) that you have access to

or

2) in a single project (and single subject) based on kargs

Parameters
e projectid - ID of a project on XNAT
* subjectid — ID/label of a subject
Returns

List of sessions

get_sessions_minimal (projectid)
Parameters
projectid - ID of a project on XNAT

Returns
List of sessions

get_sgp_assessor_path(project, subject, assessor)

Given project, subject, assessor (strings), returns assessor path (string)
get_subject_path(project, subject)

Given project, subject (strings), returns subject path (string)
get_subject_resources (project_id, subject_id)

Given project and subject (strings), return list of subject’s resources
get_subjects(project_id)

Given project_id (string), return list of subjects in project
list_project_assessor_types (projectid)

List all the assessors that you have access to based on passed project.

Parameters
(string) (projectid) — ID of a project on XNAT

Returns
List of all the assessors for the project

list_project_assessors(projectid)
List all the assessors that you have access to based on passed project.

Parameters
(string) (projectid) — ID of a project on XNAT

Returns
List of all the assessors for the project

select_assessor (project, subject, session, assessor)
Given project, subject, session, assessor (strings), returns assessor object

23.

Source Documentation

31

DAX Documentation, Release 2.11.1-dev0

select_assessor_resource (project, subject, session, assessor, resource)

Given project, subject, session, assessor, resource (strings), returns assessor resource object

select_experiment (project, subject, session)

Given project, subject, session (strings), returns session (experiment object) Same as select_session

select_project (project)

Given project (string), returns project object

select_scan(project, subject, session, scan)

Given project, subject, session, scan (strings), returns scan object

select_scan_resource (project, subject, session, scan, resource)

Given project, subject, session, scan, resource (strings), returns scan resource object

select_session(project, subject, session)

Given project, subject, session (strings), returns session (experiment object) Same as select_experiment

select_sgp_assessor (project, subject, assessor)

Given project, subject, assessor (strings), returns assessor object

select_subject (project, subject)

Given project, subject (strings), returns subject object

class dax.XnatUtils.SpiderProcessHandler (script_name, suffix, project=None, subject=None,
experiment=None, scan=None, alabel=None,
assessor_handler=None, time_writer=None, host=None)

Class to handle the uploading of results for a spider.

add_file(filepath, resource)

Add a file in the assessor in the upload directory based on the
resource name as will be seen on XNAT
Parameters
» filepath — Full path to a file to upload
» resource — The resource name it should appear under in XNAT
Returns

None

add_folder (folderpath, resource_name=None)
Add a folder to the assessor in the upload directory.

Parameters

» folderpath — Full path to the folder to upoad

¢ resource_name — Resource name chosen (if different than basename)
Raises

e shutil.Error — Directories are the same

* OSError — The directory doesn’t exist

Returns
None

32 Chapter 2. Versions and Installation

https://docs.python.org/3/library/shutil.html#shutil.Error
https://docs.python.org/3/library/exceptions.html#OSError

DAX Documentation, Release 2.11.1-dev0

add_pdf (filepath)
Add the PDF and run ps2pdf on the file if it ends with .ps

Parameters
filepath — Full path to the PDF/PS file

Returns
None

add_snapshot (snapshot)
Add in the snapshots (for quick viewing on XNAT)

Parameters
snapshot — Full path to the snapshot file

Returns
None

clean(directory)

Clean directory if no error and pdf created

Parameters
directory — directory to be cleaned

done ()

Create a flag file that the assessor is ready to be uploaded and set
the status as READY_TO_UPLOAD

Returns
None

file_exists(fpath)
Check to see if a file exists

Parameters
fpath — full path to a file to assert it exists

Returns
True if it exists, False if it doesn’t

folder_exists(fpath)
Check to see if a folder exists

Parameters
fpath — Full path to a folder to assert it exists

Returns
True if it exists, False if it doesn’t

print_copying_statement (label, src, dest)
Print a line that data is being copied to the upload directory

Parameters
¢ label — The XNAT resource label
* src — Source directory or file

* dest — Destination directory or file

23.

Source Documentation

33

DAX Documentation, Release 2.11.1-dev0

Returns
None

print_err(msg)

Print error message using time writer if set, print otherwise

Parameters
msg — Message to print

Returns
None

print_msg(msg)
Prints a message using TimedWriter or print

Parameters
msg — Message to print

Returns
None

set_assessor_status (status)
Set the status of the assessor based on passed value

Parameters
status — Value to set the procstatus to

Except
All catchable errors.

Returns
None

set_error()
Set the flag for the error to 1

Returns
None

2.4 DAX Manager

2.4.1 Table of Contents:

1. About
How to set it up

DAX 1

won

1. How to add a Module in DAX 1
How to add a Process in DAX 1
LDAX

hal

1. How to add a Module in LDAX
2. How to add a Process in LDAX

34

Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

About

DAX Manager is a non-required tool hosted in REDCap which allows you to quickly generate settings files that can be
launched with DAX. This alleviates the need to manual write settings files and makes updating scan types, walltimes,
etc a much quicker and streamlined process.

How to set it up

The main instrument should be called General and contains a lot of standard variables that are required for DAX to
interface with DAX Manager appropriately. For convenience, a copy of the latest data dictionary has been included
and can be downloaded here for reference. It is suggested to use this version even if you do not plan on running all of
the spiders because it is currently being used in production

https://github.com/VUIIS/dax/blob/master/docs/files/dax_manager/XNATProjectSettings_DataDictionary_
2016-01-21.csv

2.4.2 DAX 1

How to add a Module in DAX 1

Variables used in a module must all start with the FULL module name. For example, consider “Module dcm2niix”.
All of the variables for this module must start with “module_dcem2niix_". There are 2 required variables. The first
is the “Module File” variable. This variable for “Module dcm2niix” would be called “module_dcm?2niix_file”. The
“Action Tags / Field Annotation” should be @ DEFAULT="MODULE_NAME”. See below for an example.

Edit Field ®

You may add a new project field to this data collection instrument by completing the fields below and clicking the Save button at the
bottom. When you add a new field, it will be added to the form on this page. For an overview of the different field types available,
you may view the E¥ Field Types video (4 min).

Field Type: | Text Box (Short Text, Number, Date/Time, ...) ¥

Field Label Use the Rich Text Editor |? .
Variable Name (utilized in logic, ca

Madule File maodule_dcm2niix_file

R GATLLNY [¥] Smart Variables

Validation? (optional) | — None - v

-- select ontology service -- v

Action Tags / Field Annotation [optional) Required?* No @ Yes
@DEFAULT="Module_dcm2niix.py" * Prompt if field is blank
Identifier? ® No) Yes

Does the field contain identifying information (2.g.. name, SSN, address)?

about

oout [{ElR R ERY or using Field Annotation Custom Alignment | Right / Vertical (RV) v

Align the position of the field on the page

Field Note |

Small reminder

Save Cancel

The second required variable is the “Module Arguments” variable. In the case of “Module dcm2niix”, this variable
would be called “module_dcm?2niix_args”. See below for an example.

2.4. DAX Manager 35

https://github.com/VUIIS/dax/blob/master/docs/files/dax_manager/XNATProjectSettings_DataDictionary_2016-01-21.csv
https://github.com/VUIIS/dax/blob/master/docs/files/dax_manager/XNATProjectSettings_DataDictionary_2016-01-21.csv

DAX Documentation, Release 2.11.1-dev0

Edit Field %

You may add a new project field to this data collection instrument by completing the fields below and clicking the Save button at the
bottom. When you add a new field, it will be added to the form on this page. For an overview of the different field types available,
you may view the B Field Types video (4 min).

Field Type: Notes Box (Paragraph Text) v

Field Label Use the Rich Text Editor .
Variable Name (utilized in logic, calcs, and exports)

hre < » Enable auto naming of variable
Module Arguments module_dcmz2niix_args based upon fts Field Label?

OMNLY letters, numbe:

Required?* ® No) Yes
* Promgt if field is blank

underscore:

Identifier? ® No) Yes
Doas the field contain identifying information (e.g., name, S5N, address)?

Action Tags / Field Annotation (optional) Custom Alignment | Right / Vertical (RV) v
Align the position of the field on the page

Field Note (optional)
Learn about [EYa0o or using Field Annotation
arn 4 @ jiz=) or using Field Annotation Small reminder text displayed underneath field

Save Cancel

How to add a Process in DAX 1

Processes are setup very similarly to Modules. There are 2 required variables, “Processor YAML File” and “Processor
Arguments”. The variable names use slighly different naming conventions as Modules. For example, consider “Pro-
cessor slant_v1”. The “Processor YAML File” variable should be named “slant_v1_file” and the “Action Tags / Field
Annotation” field should contain the full name of the processor (@ DEFAULT="slant_v1.0.0_processor.yaml”). See
below for an example.

Edit Field ®

You may add a new project field to this data collection instrument by completing the fields below and clicking the Save button at the
bottom. When you add a new field, it will be added to the form on this page. For an cverview of the different field types available,
you may view the B Field Types video (4 min).

Field Type: Text Box (Short Text, Number, Date/Time, ...) ¥

Field Label Use the Rich Text Editor .
Variable Name (utilized in logic, calcs, and exports)

- o . Enable auto naming of variable
Processor YAML File slant_v1_file based upon itz Fizld Labal?

ONLY letters, numbers, and underscores

al- VR JTLL0N [%] Smart Variables |l - Piping

Validation? (optional) | - None — v
_or-
P .
- select ontology service — v
Action Tags / Field Annotation (optional) Required?* '/ No ® Yes
@DEFAULT="slant_v1.0.0_processor.yaml" * Promet i field is blank
Identifier? ® No ' Yes
Y Does the field contain identifying information (e.g.. name, SSM, address)?
Learn about or using Field Annotation Custom A\ignrnem: Right 7 Vertical (RV) v

Align the position of the field on the page
Field Note (optional)

Small reminder taxt displayed undemesth field

Save Cancel

The second required variable, “Processor Arguments” follows the same naming conventions. See below for an example.

36 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

Edit Field x

You may add a new project field to this data collection instrument by completing the fields below and clicking the Save button at the
bottom. When you add a new field, it will be added to the form on this page. For an overview of the different field types available,
you may view the B Field Types video (4 min).

Field Type: | Notes Box (Paragraph Text) v

Field Label Use the Rich Text Editor |2)
Variable Name (utilized in logic, cales, an

Processor Arguments slant_w1_args

Required?* '® No ' Yes

rompt if field is blank

Identifier? ® No ' Yes

Does the field contain identifying information (e.g., name, 55N, address)?
Action Tags / Field Annotation [optional) Custom Alignment Right / Vertical (RV) v
Align the pasition of the field on the page

Field Note [optional)

Learn about or using Field Annotation

Save Cancel

2.4.3 LDAX

How to add a Module in LDAX

Variables used in a module must all start with the text immediately AFTER Module. For example, consider “Module
dem?2nii philips”. All of the variables for this module must start with “dem2nii_philips_”. One required variable is the
“on” variable. This variable, again, in the case of “Module dcm2nii philips”, would be called “dcm2nii_philips_on”.
This is used to check to see if the module related to this record in REDCap should be run for your project or not. It
must also be of the yes/no REDCap type. If you do not have this variable included, you will get errors when you run
dax_manager. The second required variable is the “Module name” variable. In the case of “Module dcm2nii philips”,
this variable is called “dcm2nii_philips_mod_name”. This relates to the class name of the python module file. This
information is stored in the REDCap “Field Note” (See below).

2.4. DAX Manager 37

DAX Documentation, Release 2.11.1-dev0

Edit Field x

You may add a new project field to this data collection instrument by completing the fields below and clicking the Save button at the
bottom. When you add a new field, it will be added to the form on this page. For an overview of the different field types available,
you may view the 3 Field Types video (4 min}.

Field Type: | Text Box (Short Text, Number, Date/Time, ...) v

Field Label 4 How to use Piping
Module Name:

Variable Name (utilized during data export)
dcm2nii_phillips_mod_name

Enable auto naming

upan its Field Label?

Validation? (optional) | —— None -— L

Enable searching within a biomedical ontology [z

Field Annotation (optional) @ Learn about Action Tags -- choose ontology to search --

Required?* & No Yes
Identifier? (& No Yes
Custom Alignment | Right/ Vertical (RV) ¥

Field Note (optional) | Default: Module_dcm2nii_phillips

Save Cancel

This variable must be a REDCap Text Box type (as do all other variables at this point). This must be entered in
the following format: “Default: <Module_Class_Name>". All other variables that are used must also start with the
“dem2nii_philips_” prefix and must match those of the module init.

Additionally, for the sake of user-friendliness, all variables should use REDCap’s branching logic to only appear if the
module is “on”. It is important to note that in all cases, the REDCap “Field Label” is not used in any automated fashion,
but should be something obvious to the users.

How to add a Process in LDAX

Just like in the case of Modules, Processes follow a close formatting pattern. Similarly, all process variables should
start with the text immediately after “Process *“. For this example, consider ‘“Process Multi_Atlas”. Just like in the case
of the modules, the first variable should be a REDCap yes/no and should be called “multi_atlas_on”. The remainder of
the variables should all be of REDCap type “Text Box”. The next required variable is the “Processor Name” variable
which must be labeled with the “<Process Name>_proc_name” suffix. In the case of “Process Multi_Atlas”, this is
called “multi_atlas_proc_name”. Just like in the case of the Module, the class name of the processor should be entered
in the REDCap Field Note after “Default: .

There are several other required variables which will be enumerated below (suffix listed first):
1. _suffix_proc - Used to determine what the processor suffix (if any should be)
2. _version - The version of the spider (1.0.0, 2.0.1 etc)
3. _walltime - The amount of walltime to use for the spider when executed on the grid

4. _mem_mb - The amount of ram to request for the job to run. Note this should be in megabytes

38 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

5. _scan_types - If writing a ScanProcessor, this is required. If writing a SessionProcessor, this is not required.
This, in the case of a ScanProcessor, is used to filter out the scan types that the processor will accept to run the
spider on.

Just like in the case of a Module, all variables other than the “on” variable should use REDCap branching logic to only
be visible when the process is “on”.

2.5 Contributors

DAX is a multi-institution collaborative effort of the following labs:

MASI at Vanderbilt University, Nashville, Tennessee, USA

Center for Cognitive Medicine at Vanderbilt University Medical Center, Nashville, Tennessee, USA
TIG at UCL (University College London), London, UK

2.6 How To Contribute

We encourage all collaborations! However, we follow a pull-request work flow to help facilitate a simplified code-
review process. If you would like to contribute, we kindly request that any of your work be done in a branch. Rules for
branching and merging are outlined below:

1. Branches - The scope of your branch should be narrow. Do not make a branch only for changing documentation,
and then refactor how task.py works. These should be two totally separate branches.

2. Testing - You should test your branch before making a pull request. Do not make a pull request with untested
code.

3. Committing - Use helpful commit messages. Do not use messages like “updates”, “bug fix”, and “updated a few
files” etc. Please make these commit messages at least somewhat helpful. Use lots of commits, do not make 1
bulk commit of all of the changes that you make. This practice makes it hard for others to review.

4. Pull request - When you are ready to make a pull request, please try to itemize all of the changes that you made
in at least moderate depth. This will alert everyone reviewing the code of possible things to check to make sure
that you didn’t break anything.

5. Merging - Do NOT merge your own pull request. Contributors should review each and every pull request before
merging into the master branch. Please allow at least a few days before commenting and asking for status. If the
depth of changes is deep, please allow at least a few weeks.

6. Master branch - NEVER commit to the master branch directly unless there is a serious bug fix.
If you are unfamiliar with branches in github, please see the link below:

Working with Branches

2.5. Contributors 39

https://masi.vuse.vanderbilt.edu/index.php/Main_Page/
https://www.vumc.org/ccm/
http://cmictig.cs.ucl.ac.uk/
https://help.github.com/articles/using-pull-requests/

DAX Documentation, Release 2.11.1-dev0

2.7 FAQ

These FAQs assume that you have read the XNAT documentation and or are familiar with navigating through the web
UL If you are not, you can read the XNAT documentation here.

1. What is DAX?
DAX is an open source project that uses the pyxnat wrapper for the REST api to automate pipeline running
on a DRMAA compliant grid.

2. What are Modules?
Modules are a special class in DAX. They represent, generally, a task that should not be performed on the
grid. The purpose for this was to not fill up the grid queue with jobs that take 20-30 seconds. Examples of
such tasks could be converting a DICOM to a NIfTI file, changing the scan type, archiving a session from the
prearchive, or performing skull-stripping. As you can see, these tasks can all be considered “light-weight”
and thus probably don’t have a place on the grid.

3. What are Spiders?
Spiders are a python script. The purpose of the script is to download data from XNAT, run an image
processing pipeline, and then prepare the data to be uploaded to XNAT. Spiders are run on the grid because
they can take hours to days.

4. How do I know the EXACT command line call that was made?
The PBS resource contains the script that was submitted to the grid scheduler for execution. You can view
this file for the exact command line call(s) that were executed on the grid.

5. 1 think I found a bug, what should I do?
The easiest way to get a bug fixed is to post as much information as you can on the DAX github issue tracker.
If possible, please post the command line call you made (with any sensitive information removed) and the
stack trace or error log in question.

6. I have an idea of something I want to add. How do I go about adding it?
Great! We’d love to see what you have to include! Please read the guidelines on how to contribute.

2.8 DAX Processors

2.8.1 About

DAX pipelines are defined by creating YAML text files. If you are not familiar with YAML, start here: https:
/Mlearnxinyminutes.com/docs/yaml/.

A processor YAML file defines the Environment, Inputs, Commands, and Outputs of your pipeline.

2.8.2 Processor Repos

There are several existing processors that can be used without modification. The processors in these repositories can
also provide valuable examples.

https://github.com/VUIIS/dax_yaml_processor_examples

https://github.com/VUIIS/yaml_processors (private, internal use only)

40 Chapter 2. Versions and Installation

https://wiki.xnat.org/display/XNAT16/Home/
https://github.com/VUIIS/dax/issues
https://learnxinyminutes.com/docs/yaml/
https://learnxinyminutes.com/docs/yaml/
https://github.com/VUIIS/dax_yaml_processor_examples
https://github.com/VUIIS/yaml_processors

DAX Documentation, Release 2.11.1-dev0

2.8.3 Overview

The processor file defines how a script to run a pipeline should be created. DAX will use the processor to generate
scripts to be submitted to your cluster as jobs. The script will contain the commands to download the inputs from
XNAT, run the pipeline, and prepare the results to be uploaded back to XNAT (the actual uploading is performed by
DAX via dax upload).

2.8.4 A “Simple” Example

moreauto: true
inputs:
default:
container_path: MRIQA_v1.0.0.simg
Xnat:
scans:
- name: scan_tl
types: MPRAGE
resources:

- resource: NIFTI
ftype: FILE
varname: tl_nifti

outputs:

- path: stats.txt
type: FILE
resource: STATS

- path: report.pdf

type: FILE
resource: PDF
- path: DATA
type: DIR
resource: DATA
command: >-
attrs:

walltime: '36:00:00'
memory: 8192

2.8. DAX Processors 41

DAX Documentation, Release 2.11.1-dev0

2.8.5 Parts of the Processor YAML

All processor YAML files should start with these two lines:

moreauto: true

The primary components of a processor YAML file are:
* inputs
¢ outputs
e command
* attrs

Each of these components is required.

2.8.6 inputs

The inputs section defines the files and parameters to be prepared for the pipeline. Currently, the only subsections of
inputs supported are defaults and xnat.

The defaults subsection can contain paths to local resources such as singularity containers, local codebases, local data
to be used by the pipeline. It can essentially contain any value that needs to be passed directly to the command template
(see below).

The xnat section defines the files, directories or values that are extracted from XNAT and passed to the command.
Currently, the subsections of xnat that are supported are scans, assessors, attrs, and filters. Each of these subsections
contains an array with a specific set of fields for each item in the array.

Xnat scans

Each xnat scans item requires a types field. The types field is used to match against the scan type attribute on XNAT.
The value can be a single string or a comma-separated list. Wildcards are also supported.

By default, any scan that matches will be included. You can exclude scans with a quality of unusable on XNAT by
including the field needs_qc with value of True. The default is to run anything, i.e. a needs_qc value of False. Note
that questionable is treated the same as usable, so they’ll always run.

The resources subsection of each xnat scan should contain a list of resources to download from the matched scan. Each
resource requires fields for ftype and var.

ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download individual
files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained. DIRJ
will also download the directory but strips extraneous intermediate directories from the produced path as implemented
by the -j flag of unzip.

The var field defines the tag to be replaced in the command string template (see below).

The optional fmatch field defines a regular expression to apply to filter the list of filenames in the resource.

42 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

Xnat assessors

Each xnat assessor item requires a proctype field. The proctype field is used to match against the assessor proctype
attribute on XNAT. The value can be a single string or a comma-separated list. Wildcards are also supported.

By default, any assessor that matches proctype will be included. However if needs_qc is set to True, assessors with a
gcstatus of “Needs QA”, “Bad”, “Failed”, “Poor”, or “Do Not Run” will be excluded.

The resources subsection of each xnat assessor should contain a list of resources to download from the matched scan.
Each resource requires fields for ftype and var.

The ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download indi-
vidual files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained.
DIRJ will also download the directory but strips extraneous intermediate directories from the produced path as impele-

=9

mented by the “~j” flag of unzip.
The var field defines the tag to be replaced in the command string template (see below).

Optional fields for a resource are fmatch, fdest and fcount. fmatch defines a regular expression to apply to filter the
list of filenames in the resource. fcount can be used to limit the number of files matched. By default, only 1 file is
downloaded. The inputs for some containers are expected to be in specific locations with specific filenames. This is
accomplished using the fdest field. The file or directory gets copied to /INPUTS and renamed to the name specified in
fdest.

xnat attrs

You can evaluate attributes at the subject, session, or scan level. Any fields that are accessible via the XNAT API can
be queried. Each attrs item should contain a varname, object, and attr. varname specifies the tag to be replaced in
the command string template. object is the XNAT object type to query and can be either subject, session, or scan. attr
is the XNAT field to query. If the object type is scan, then a scan name from the xnat scans section must be included
with the ref field.

For example:

attrs:
- varname: project
object: session
attr: project

This will extract the value of the project attribute from the session object and replace {project} in the command template.

xnat filters

filters allows you to filter a subset of the cartesian product of the matched scans and assessors. Currently, the only filter
implemented is a match filter. It will only create the assessors where the specified list of inputs match. This is used
when you want to link a set of assessors that all use the same initial scan as input.

For example:

filters:
- type: match
inputs: scan_tl,assr_freesurfer/scan_tl1

This will tell DAX to only run this pipeline where the value for scan_t1 and assr_freesurfer/scan_t1 are the same scan.

2.8. DAX Processors 43

DAX Documentation, Release 2.11.1-dev0

outputs

The outputs section defines a list files or directories to be uploaded to XNAT upon completion of the pipeline. Each
output item must contain fields path, type, and resource. The path value contains the local relative path of the file or
directory to be uploaded. The type of the path should either be FILE or DIR. The resource is the name of resource of
the assessor created on XNAT where the output is to be uploaded.

For every processor, a PDF output with resource named PDF is required and must be of type FILE.

command

The command field defines a string template that is formatted using the values from inputs.

EEED)

Each tag specified inside curly braces (“{}””’) corresponds to a field in the defaults input section, or to a var field from
a resource on an input or to a varname in the xnat attrs section.

Not all var must be used.

attrs

The attrs section defines miscellaneous other attributes including cluster parameters. These values replace tags in the
jobtemplate.

jobtemplate

The jobtemplate is a text file that contains a template to create a batch job script.

2.8.7 Versioning

By default, name and version are parsed from the container file name, based on the format:
<NAME>_v<major.minor.revision>.simg where<NAME>_v<major> is the proctype.

The YAML file can override these by using any of the top level fields procversion, procname, and/or proctype.
procversion specifies the major.minor.revision, e.g. 1.0.2. procname specifies the name only without version, e.g.
mprage. proctype is the name and major version, e.g. mprage_vl1. If only procname is specified, the version is parsed
from the container name. If only procversion is specified, the name is parsed from the container name. If proctype is
specified, it will override everything else to determine proctype.

2.8.8 Notes on Singularity run options

—cleanenv avoids env confusion, and —contain prevents accidentally using code from the host filesystem. However,
with —contain, some spiders will need to have specific temp space on the host attached. E.g. for some versions of
Freesurfer, —bind ${INDIR}:/dev/shm. For compiled Matlab spiders, we need to provide —home $INDIR to avoid
.mcrCache collisions in temp space when multiple spiders are running. And, some cases may require ${INDIR }:/tmp
or /tmp:/tmp.

44 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

2.9 DAX Processors, version 3

2.9.1 About

DAX pipelines are defined by creating YAML text files. If you are not familiar with YAML, start here: https:
/Mlearnxinyminutes.com/docs/yaml/.

A processor YAML file defines the Environment, Inputs, Commands, and Outputs of your pipeline.

Version 3 processors have a number of new options and conveniences.

2.9.2 Processor Repos

There are several existing processors that can be used without modification. The processors in these repositories can
also provide valuable examples.

https://github.com/VUIIS/dax_yaml_processor_examples

https://github.com/VUIIS/yaml_processors (private, internal use only)

2.9.3 Overview

The processor file defines how a script to run a pipeline should be created. DAX will use the processor to generate
scripts to be submitted to your cluster as jobs. The script will contain the commands to download the inputs from
XNAT, run the pipeline, and prepare the results to be uploaded back to XNAT (the actual uploading is performed by
DAX via dax upload).

2.9.4 A Basic Example

procyamlversion: 3.0.0-dev.0® # Indicates to run as a v3 processor
containers: # Containers we will ref in the command.,
—,section
- name: EXAMP # Reference by this name in command.

—section

path: example_v2.0.0.sif # Name/path that is replaced in command.
—,section

source: docker://vuiiscci/example:v2.0.0 # Not used, but good practice to set it

requirements: # Requirements for the cluster node, substituted into SBATCH section of.
—job template

walltime: 0-2 # Time to request - SLURM supports the format DAYS-HOURS

memory: 16G

inputs:
vars: # Keyvalues to substitute in the command, for passing static settings
- paraml: paramlvalue
Xnat:
attrs: # Values to extract from xnat at the specified level of the current instance
- varname: scanlD # Name to be used to dereference later

(continues on next page)

2.9. DAX Processors, version 3 45

https://learnxinyminutes.com/docs/yaml/
https://learnxinyminutes.com/docs/yaml/
https://github.com/VUIIS/dax_yaml_processor_examples
https://github.com/VUIIS/yaml_processors

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

object: scan # Source, of: project, subject, session, scan, assessor
attr: ID # Name of the field in xnat
ref: scan_fmri # From which object in inputs, referred to by name
scans:
- name: scan_fmri # the name of this scan to dereference later
types: fMRI_run* # the scan types to match on the session in XNAT
nifti: fmri.nii.gz # Shortcut to download file in NIFTI resource as fmri.nii.
gz
resources: # To get files in other resources
- resource: EDAT # Name of the resource
fdest: edat.txt # Download the file as edat.txt
varname: edat_txt # Reference for command string substitution
assessors:
- name: assr_preproc
proctypes: preproc-fmri_v2
resources:
- {resource: FILTERED_DATA, fdest: filtered_data.nii.gz}
outputs:
- pdf: report*.pdf # Matching file uploaded to PDF resource
- stats: stats.txt # Matching file uploaded to STATS resource
- dir: PREPROC # Matching directory (PREPROC) uploaded to PREPROC resource
- path: inputpathname # General purpose for other outputs
type: DIR # Type is FILE or DIR
resource: RESOURCENAME # Store it in resource RESOURCENAME

Available commands are 'singularity_run' and 'singularity_exec'. These include default
flags --contain --cleanenv, and mount points for temp space plus INPUTS and OUTPUTS
command :

type: singularity_run

extraopts: [] # Appends to default options for the run command
container: EXAMP # Name of the container in the list above
args: >-

--fmri_file /INPUTS/fmri.nii.gz
--filtered_file /INPUTS/filtered_data.nii.gz
--paraml {paramlvalue}

--scan_id {scanID}

--edat_txt /INPUTS/{edat_txt}

description: |
Example description that gets printed to every PDF created by this processor
1. step 1 does something cool
2. step 2 does this other thing

Specify the job template to use (examples: https://github.com/VUIIS/dax_templates/)
job_template: job_template_v3.txt

46 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

2.9.5 Parts of the Processor YAML
2.9.6 inputs (required)

The inputs section defines the files and parameters to be prepared for the pipeline. Currently, the only subsections of
inputs supported are vars and xnat.

The vars subsection can store parameters to be passed as pipeline options, such as smoothing kernel size, etc that may
be more conveniently coded here to substitute into the command arguments.

The xnat section defines the files, directories or values that are extracted from XNAT and passed to the command.
Currently, the subsections of xnat that are supported are scans, assessors, attrs, and filters. Each of these subsections
contains an array with a specific set of fields for each item in the array.

Xnat scans

Each xnat scans item requires a types field. The types field is used to match against the scan type attribute on XNAT.
The value can be a single string or a comma-separated list. Wildcards are also supported.

The resources subsection of each xnat scan should contain a list of resources to download from the matched scan.

ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download individual
files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained. DIRJ
will also download the directory but strips extraneous intermediate directories from the produced path as implemented
by the -j flag of unzip.

The varname field defines tags to be replaced in the command string template (see below).
The optional fmatch field defines a regular expression to apply to filter the list of filenames in the resource. fmulti

affects how inputs are handled when there are multiple matching files in a resource. By default, this situation causes
an exception, but if fmulti is set to anyl, a single (arbitrary) file is selected from the matching files instead.

By default, any scan that matches will be included as an available input. Several optional settings affect this:

* If needs_qc is True and require_usable is False or not specified, assessors that would have a scan as an input
will be created, but will not run if the scan is marked unusable.

¢ If needs_qc is True and require_usable is also True, assessors that would have a scan as an input will be created,
but will not run unless the scan is marked usable.

* If skip_unusable is True, assessors that would have an unusable scan as an input will not even be created.

* keep_multis may be all (the default); first; last; or an index 1,2,3,... This applies when there are multiple scans
in the session that match as possible inputs. Normally all matching scans are used as inputs, multiplying assessors
as needed. When first is specified, only the first matching scan will be used as an input, reducing the number of
assessors built by a factor of the number of matching scans. “First” is defined as alphabetical order by scan ID,
cast to lowercase. The exact scan type is not considered; only whether there is a match with the types specified.

2.9. DAX Processors, version 3 47

DAX Documentation, Release 2.11.1-dev0

Xnat assessors

Each xnat assessor item requires a proctype field. The proctype field is used to match against the assessor proctype
attribute on XNAT. The value can be a single string or a comma-separated list. Wildcards are also supported.

Any assessor that matches proctype will be included as a possible input. However if needs_qc is set to True, input
assessors with a qcstatus of “Needs QA”, “Bad”, “Failed”, “Poor”, or “Do Not Run” will cause the new assessor not to
run.

The resources subsection of each xnat assessor should contain a list of resources to download from the matched scan.

The ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download indi-
vidual files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained.
DIRJ will also download the directory but strips extraneous intermediate directories from the produced path as impele-

G =9

mented by the “~j” flag of unzip.
The varname field defines the tag to be replaced in the command string template (see below).

Optional fields for a resource are fmatch and fdest. fmatch defines a regular expression to apply to filter the list
of filenames in the resource. The inputs for some containers are expected to be in specific locations with specific
filenames. This is accomplished using the fdest field. The file or directory gets copied to /INPUTS and renamed to the
name specified in fdest.

xnat attrs

You can evaluate attributes at the subject, session, or scan level. Any fields that are accessible via the XNAT API can
be queried. Each attrs item should contain a varname, object, and attr. varname specifies the tag to be replaced in
the command string template. object is the XNAT object type to query and can be either subject, session, or scan. attr
is the XNAT field to query. If the object type is scan, then a scan name from the xnat scans section must be included
with the ref field.

For example:

attrs:
- varname: project
object: session
attr: project

Or equivalently
attrs:
- {varname: project, object: assessor, attr: project}

This will extract the value of the project attribute from the assessor object and replace {project} in the command
template.

xnat filters

filters allows you to filter a subset of the cartesian product of the matched scans and assessors. Currently, the only filter
implemented is a match filter. It will only create the assessors where the specified list of inputs match. This is used
when you want to link a set of assessors that all use the same initial scan as input.

For example:

filters:
- type: match
inputs: scan_t1,assr_freesurfer/scan_tl

48 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

This will tell DAX to only run this pipeline where the value for scan_t1 and assr_freesurfer/scan_t1 are the same scan.

outputs

The outputs section defines a list files or directories to be uploaded to XNAT upon completion of the pipeline. Each
output item must contain fields path, type, and resource. The path value contains the local relative path of the file or
directory to be uploaded. The type of the path should either be FILE or DIR. The resource is the name of resource of
the assessor created on XNAT where the output is to be uploaded.

For every processor, a PDF output with resource named PDF is required and must be of type FILE.
PDF and STATS outputs, as well as DIR type outputs, have shortcuts as shown in the example.

command

The command field defines a string template that is formatted using the values from inputs.

9999

Each tag specified inside curly braces (“{}””’) corresponds to a field in the defaults input section, or to a var field from
a resource on an input or to a varname in the xnat attrs section.

See the example for explanations of the other fields.

jobtemplate

The jobtemplate is a text file that contains a template to create a batch job script.

2.9.7 Versioning

Processor name and version are parsed from the processor file name, based on the format
<NAME>_v<major.minor.revision>.yaml. <NAME>_v<major> will be used as the proctype.

2.9.8 Notes on singularity options

The default options are SINGULARITY_BASEOPTS in dax/dax/processors_v3.py:

--contain --cleanenv
--home $JOBDIR

--bind $INDIR:/INPUTS
--bind $OUTDIR:/OUTPUTS
--bind $JOBDIR:/tmp
--bind $JOBDIR:/dev/shm

$JOBDIR, $INDIR, SOUTDIR are available at run time, and refer to locations on the filesystem of the node where the
job is running.

Singularity has default binds that differ between installations. —contain disables these to prevent cross-talk with the host
filesystem. And —cleanenv prevents cross-talk with the host environment. However, with —contain, some spiders will
need to have specific temp space on the host attached. E.g. for some versions of Freesurfer, —bind ${INDIR }:/dev/shm.
For compiled Matlab spiders, we need to provide ~home $INDIR to avoid .mcrCache collisions in temp space when
multiple spiders are running. And, some cases may require ${INDIR }:/tmp or /tmp:/tmp. Thus the defaults above.

The entire singularity command is built as:

2.9. DAX Processors, version 3 49

DAX Documentation, Release 2.11.1-dev0

[singularity <run|exec> <SINGULARITY_BASEOPTS> <extraopts> <container> <args> J

2.9.9 Subject-Level Processors

As of version 2.7, dax supports subject-level processors, in addition to session-level. The subject-level processors can
include inputs across multiple sessions within the same subject. In the processor yaml, a subject-level processor is
implied by including the “sessions” level between inputs.xnat and scans/assessors. Each session requires the attribute
types. The types are matched against the XNAT field xnat:imageSessionData/session_type. Currently the match must
be exact.

To set the session type of a session, you can use dax/pyxnat:

[xnat.select_session(PROJ, SUBJ, SESS).attrs.set('session_type', SESSTYPE) J

Below is an example of a subject-level processor that will include an assessor from two different sessions of session
types Baseline and Week12.

procyamlversion: 3.0.0-dev.0
containers:
- name: EMOSTROOP
path: fmri_emostroop_v2.0.0.sif
source: docker://bud42/fmri_emostroop:v2
requirements:
walltime: 0-2
memory: 16G

inputs:
xnat:
sessions:
- types: Baseline
assessors:

- name: assr_emostroop_a
types: fmri_emostroop_vl
resources:

- resource: PREPROC
fmatch: swauFMRI.nii.gz
fdest: swauFMRIa.nii.gz

- types: Weekl2
assessors:

- name: assr_emostroop_c
types: fmri_emostroop_vl
resources:

- resource: PREPROC
fmatch: swauFMRI.nii.gz
fdest: swauFMRIc.nii.gz

outputs:

- dir: PREPROC

- dir: 1stLEVEL
command :

type: singularity_run

container: EMOSTROOP

args: BLvsWK12

50 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

The assessor will be created under the subject on XNAT, at the same level as a session. The proctype of the assessor
will be derived from the filename just like session-level processors. The XNAT data type of the assessor, or xsiType,
will be proc:subjGenProcData (for session-level assessors the type is proc:genprocData).

2.10 Assessors in VUIIS XNAT

An assessor is processed on XNAT. All files produced by a script using data from one scan / multiple scans / any other
process data will be / need to be upload to an assessor.

The VUIIS XNAT is using two kind of assessors :

* proc:genProcData : the generic assessor type

« fs:fsData : the specific FreeSurfer assessor type that we created (deprecated)
We are using these statuses for the assessor:

* NO_DATA : no data exists on the sessions to be able to run

* NEED_INPUTS : input data has not been created yet for a scan, multiple scans or other assessor; sometimes this
means the inputs it needs aren’t present, other times, this means everything is present but the assessor hasn’t built
yet

* NEED_TO_RUN : ready to be launched on the cluster (ACCRE). All input data for the process to run exists

* JOB_RUNNING : the assessor is built and the job is running on ACCRE or the job is completed and is waiting
to be uploaded

* JOB_FAILED : the job failed on the cluster
* READY_TO_UPLOAD : Job done, waiting for the results to be uploaded to XNAT from the cluster
* UPLOADING : in the process of uploading the resources on XNAT

« READY_TO_COMPLETE : the assessors contains all the files but we still need finish up (this includes getting
the walltime and memory used on ACCRE)

e COMPLETE : all finished

There is a QA status that is managed by the project owner. This field defaults to “Needs QA”. Other values can be set
as desired. If set to “Rerun”, the assessor will automatically be deleted and rerun.

2.11 DAX Command Line Tools

2.11.1 Table of Contents

1. List of the Tools
1. XnatSetup
XnatQuery
XnatCheck
XnatDownload
XnatUpload
XnatReport

T o

XnatSwitchProcessStatus

2.10. Assessors in VUIIS XNAT 51

DAX Documentation, Release 2.11.1-dev0

8. XnatSetup

9. XnatProcessUpload
10. XnatSubjectUpdate
11. RedCapReport

12. XnatCheckLogin
13. Xnatinfo

14. Xnatsessionupdate
15. BIDSMapping

16. XnatBOND

2.11.2 List of the Tools

Each tool has a help option and some examples on how to use the tools. You can call each tool with no arguments to
see the help.

XnatSetup
You can use the Xnatsetup (see below) command tool to setup your computer with the —basic options. It will do what
is below automatically, but if you don’t want to do that, it can be setup manually.
This Xnat commands will use two thing :
* install pyxnat and python packages on your computer (Check ‘Get started for Spiders’ on the wiki)

* set your bashrc with the env variable to connect to Xnat with pyxnat :

export XNAT_HOST=http://xnat.vanderbilt.edu/xnat

export XNAT_USER=username

export XNAT_PASS=password

export PATH=/PathToMasimatlab/trunk/xnatspiders/Xnat_tools:$PATH

FYI : you can open the bashrc like :

[vim (or nano or any editor you like) ~/.bashrc

and when you are done editing it, use :

[. ~/ .bashrc

You will after this be able to call the commands directly on your terminal.

One last thing, the Xnatupload will send you updates (errors and warnings) about the directory you are trying to upload
on Xnat. If you want to receive this email, you need to set up two variables in your bashrc :

export EMAIL_ADDR=add@gmail.com
export EMAIL_PWS=passwordforthisemail

It will use this email address to send you email. It has to be a gmail address.

Xnatsetup is as you can guess a command tool to set up your computer. It will install the python package needed and
ask for the variables that need to be set up. There are different kinds of setup :

52 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

* basic to be able to use the XNAT command tools

* advance to run spiders on your computer or ACCRE

* redcap to use the spider to send data to redcap

* cci package setup for ACCRE or if you need XnatUtils
ACCRE setup

HRRRHAH A A A A AR ARRRARAA AR A AR AR AR AR A A A AAAAAAA
XNATSETUP
XnatSetup is a command tool to set up on your computer the variables to use
the tools/spiders.

Developed by the masilab Vanderbilt University, TN, USA.
Operating system : Linux & Mac 0S
Shell : bash
Requirements : python with pip & git
Contact : benjamin.c.yvernault@vanderbilt.edu

No Arguments given

See the help bellow or Use "Xnatquery" -h
HAHRHR AR AR AR RHRH R AR AR RHAA R AR R AR AR AH AR AR R AR RAAA AR
Usage: Xnatsetup [options]

o OO W W R K R W

What is the script doing : Set up your computer to use xnat.

*Basic installation (--basic) - Needed to use the Xnat command tools or any of
the next installations : install the python package httplib2, 1xml, and pyxnat if not
already install & saving your username/host/password for XNAT.

*Advance installation (--advance) - Needed to run the non-specific spiders :
Set up the Upload Directory, set up masimatlab path for Xnatrun, add the xnat
tools to your PATH, and add Spiders.py in your PYTHONPATH .

*“Redcap installation (--redcap) - Needed to use redcap spiders (send data to
redcap) : Install Pycap / pandas if not install and set up the URL for redcap .

*“API installation (--api) - Needed to use API package to run spiders on ACCRE
via jobs (Contains XnatUtils) : Install API if not install.

*ACCRE installation (--accre) - Setup the environment to use the
package/spiders/tools on ACCRE.

Options:

-h, --help show this help message and exit

--basic Use this options to set up the env variables to use
the Xnat tools and have the basic set up.

--advance Use this options to set up the env variables to run
spiders in general.

--redcap Use this options to set up the env variables to use
redcap spiders.

--api Use this options to set up the env variables to run
spiders on ACCRE via jobs.

--Accre Use this options if you are on Accre.

--NoSudo Use this options if you don't have sudo access and you

still want to install the package (check -d option).
-d INSTALLDIR, --installdir=INSTALLDIR
Use this options to specify a directory where the
python package need to be install. It works only if
(continues on next page)

2.11. DAX Command Line Tools 53

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

you use --NoSudo option.
--tutorial Give you the step for the specific setup you are
asking.

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatQuery

Xnatquery will show you the tree on xnat. Xnatquery is a tool to query objects on XNAT for each level. You can see
which projects you have access to and see the hierarchy of data on your project. It has several options (accessible with
-h or -help) :

HAFRRBHARAHARRR T ARA R RAR B RRERARARARRAAARARARAHBRRABARARARAR RS

XnatQuery
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Query through XNAT at the level you want.
Examples:
Check the help for examples by running --help
s s oo s s ol o s s o e o s o o s s o o . 5 o o e s o £ o o s o 5 o o J-“-‘1‘4“‘1-“-‘4‘“J-“-“-“‘“ﬂ”“ﬂ“ﬂ““ﬂ#ﬂ””ﬂ#ﬂ”ﬂﬂ##

TR TFTFTFTFTFTAFT7777

usage: XnatQuery [-h] [--host HOST] [-u USERNAME] [-p PROJECT] [-s SUBJECT]
[-e SESSION] [-a ASSESSOR] [-c SCAN] [--all] [--me]

What is the script doing :
* Query on Xnat at any level.

Examples:

*Show all the projects you have access to:
Xnatquery --me

*Show all projects:
Xnatquery --all

*Query a specific level (example scan/assessors for a session):
Xnatquery -p PID -s 109873 -e 109873

*Query a specific level with all objects under it :
Xnatquery -p PID -s 109873 --all

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: env XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT.
-p PROJECT, --project PROJECT
project ID on Xnat or 'all' to see all the project.
-s SUBJECT, --subject SUBJECT
Subject label on Xnat
-e SESSION, --experiment SESSION

(continues on next page)

54 Chapter 2. Versions and Installation

mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)
Session label on Xnat
-a ASSESSOR, --assessor ASSESSOR
Assessor/Process label on XNAT. E.G: VUSTP-x-VUSTP1-x-VUSTPla-x-

—FS
-c SCAN, --scan SCAN Scan ID on Xnat.
--all Print all the objects on XNAT from the level you are at.
--me Give the projects ID that you have access.

Extra Examples

* To get information on the project

[Xnatquery -p projectID --info

 To get all the subjects in this project

[Xnatquery -p projectID

* To get all the experiments in this project

[Xnatquery -p projectID -s subject

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatCheck

Xnatcheck is a quick way to check directly on your terminal if there is the resource you just created on all your project.
You can check if there is a scan type or an assessor type as well with the options -s or -a. Options available (-h or -help):

RAR R R AR AR RRRARR AR R RRRARAR AR AR AR RRRARARAR R RRARARRR A AR RRRAAS

XnatCheck
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Check XNAT data (subject/session/scan/assessor/resource)
Examples:
Check the help for examples by running --help

RAR R R AR AR RRRAR AR ARRRRA R AR AR AR RRRARRR AR R RRAAAR AR AR AARARARS

usage: XnatCheck [-h] [--host HOST] [-u USERNAME] [-p PROJECTS]
[--filters FILTERS [FILTERS ...]]
[--delimiter DELIMITER_FILTER_RESOURSE] [--csv CSV_FILE]
[--format FORMAT] [--printfilters] [--printformat]

What is the script doing :
*Check object on XNAT (subject/session/scan/assessor/resources) specify by the.
—options.

How to write a filter string:
- for resources filters, the string needs to follow this template:

(continues on next page)

2.11. DAX Command Line Tools 55

mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

variable_name=value--sizeoperatorValue--nbfoperatorValue--fpathsoperatorValue

By default, it will return the assessor that does have the resource if no other.
—filter specify
- for other filters, the string needs to follow this template:

variable_name=Value

operator can be different than =. Look at the table in --printfilters

Use --printfilters to see the different variables available

Examples:
*See format variables:
Xnatcheck --printformat
*See filter variables:
Xnatcheck --printfilters
*Get list of T1,DTI scans that have a resource called NIFTI:
Xnatcheck -p PID --filters type=T1,DTI assessor_res=NIFTI
*Get list of fMRIQA assessors that have a resource called PDF:
Xnatcheck -p PID --filters proctype=fMRIQA assessor_res=PDF
*Get list of assessors except fMRIQA that have a resource called PDF :
Xnatcheck -p PID --filters proctype!=fMRIQA assessor_res=PDF
*Get list of project sessions that do not have a resource called testing:
Xnatcheck -p PID --filters session_label=VUSTPla,VUSTP2b,VUSTP3a session_res!
—=testing
*Get list of project fMRIQA and VBMQA that used more than 45mb and less than lhour:
Xnatcheck -p PID1,PID2 --filters proctype=fMRIQA,VBMQA procstatus=COMPLETE
< "memused>45mb" "walltimeused<1:00:00" --format assessor_label,procnode,memused,
—walltimeused

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: env XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT.
-p PROJECTS, --project PROJECTS
Project(s) ID on XNAT
--filters FILTERS [FILTERS ...]
List of filters separated by a space to apply to the search.
--delimiter DELIMITER_FILTER_RESOURSE
Resource filters delimiter. By default: --.

--csv CSV_FILE File path to save the CSV output.

--format FORMAT Header for the csv. format: list of variables name comma-
—.separated

--printfilters Print available filters.

--printformat Print available format for display.

Extra Examples

* To return all the scans where there is no NIFTI on the project BLSA

[Xnatcheck -p BLSA -r NIFTI

* To return all the assessors where there is no PDF on the project BLSA

56 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

[Xnatcheck -p BLSA -r PDF -1 1 J

* To return all the subjects/experiments where there is no fMRIQA assessor on the project BLSA

[Xnatcheck -p BLSA -a fMRIQA]

* To return all the subjects/experiments where there is no fMRIQA assessor on the project BLSA and check for
the one that exists if there is a PDF resource

[Xnatcheck -p BLSA -a fMRIQA -r PDF]

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatDownload

Xnatdownload will download all the resources that you asked for in a directory. Xnatdownload provides bulk down-
load of data from XNAT with specific filters applied. It provides options to narrow your download to only what you
need. This tool will generate a folder per project in your -d directory with two files: download_commandLine.txt and
download_report.csv with the description of what you downloaded. It has several options (accessible with -h or -help)

HARHHRHHHHHR BRI RRHRH BB AR AR R

XNATDOWNLOAD

#

Developed by the masilab Vanderbilt University, TN, USA.

If issues, email benjamin.c.yvernault@vanderbilt.edu

Parameters :

No Arguments given

See the help bellow or Use "Xnatdownload" -h

HHHBHAH AR AR H R AR H AR AR AR HAR AR AR H AR AR AR H AR AR AR A AR AR

usage: Xnatdownload [-h] [--host HOST] [-u USERNAME] [-p PROJECT]
[-d DIRECTORY] [-D] [--subj SUBJECT] [--sess SESSION]
[-s SCANTYPE] [-a ASSESSORTYPE] [--WOS WITHOUTS]
[--WOP WITHOUTA] [--quality QUALITIES] [--status STATUS]
[--qcstatus QCSTATUS] [-c CSVFILE] [--rs RESOURCESS]
[--ra RESOURCESA] [--selectionS SELECTIONSCAN]
[--selectionP SELECTIONASSESSOR] [--overwrite] [--updatel]
[--fullRegex] [-o OUTPUTFILE] [-i] [-b BIDS_DIR] [-xt]
[--bond_dir BOND_DIR]

What is the script doing :
*Download filtered data from XNAT to your local computer using the different OPTIONS.

Examples:
*Download all resources for all scans/assessors in a project:
Xnatdownload -p PID -d /tmp/downloadPID -s all --rs all -a all --ra all
*Download NIFTI for T1,fMRI:
Xnatdownload -p PID -d /tmp/downloadPID -s T1,fMRI --rs NIFTI
*Download only the outlogs for fMRIQA assessors that failed:
Xnatdownload -p PID -d /tmp/downloadPID -a fMRIQA --status JOB_FAILED --ra OUTLOG
*Download PDF for assessors that Needs QA:
Xnatdownload -p PID -d /tmp/downloadPID -a all --qcstatus="Needs QA" --ra OUTLOG
*Download NIFTI for Tl for some sessions :

(continues on next page)

2.11. DAX Command Line Tools 57

mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

Xnatdownload -p PID -d /tmp/downloadPID --sess 109309,189308 -s all --rs NIFTI
*Download same data than previous line but overwrite the data:
Xnatdownload -p PID -d /tmp/downloadPID --sess 109309,189308 -s all --rs NIFTI --
—overwrite
*Download data described by a csvfile (follow template)
Xnatdownload -d /tmp/downloadPID -c upload_sheet.csv
*Transform the XnatDownload data in BIDS format for all sessions, scantype and.
-.resources:
Xnatdownload -p PID --sess all -d /tmp/downloadPID -s all --rs all --bids /tmp/
—BIDS_dataset
*Transform the XnatDownload data in BIDS format for all sessions, scantype and.
—.resources with xnat tag:
Xnatdownload -p PID --sess all -d /tmp/downloadPID -s all --rs all --bids /tmp/
—.BIDS_dataset -xt
*Transform the XnatDownload data in BIDS format for all sessions, scantype and.
—,resources with xnat tag and perform bond:
Xnatdownload -p PID --sess all -d /tmp/downloadPID -s all --rs all --bids /tmp/
—BIDS_dataset -xt --bond /tmp/BOND_dir

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: using $XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT. Default: using $XNAT_USER.
-p PROJECT, --project PROJECT
Project(s) ID on Xnat
-d DIRECTORY, --directory DIRECTORY
Directory where the data will be download

-D, --oneDirectory Data will be downloaded in the same directory. No sub-
directory.

--subj SUBJECT filter scans/assessors by their subject label. Format:
a comma separated string (E.G: --subj VUSTP2,VUSTP3).

--sess SESSION filter scans/assessors by their session label. Format:

a comma separated string (E.G: --sess VUSTP2b,VUSTP3a)

-s SCANTYPE, --scantype SCANTYPE
filter scans by their types (required to download
scans). Format: a comma separated string (E.G : -s
T1,MPRAGE,REST). To download all types, set to 'all'.

-a ASSESSORTYPE, --assessortype ASSESSORTYPE
filter assessors by their types (required to download
assessors). Format: a comma separated string (E.G : -a
fMRIQA,dtiQA_v2,Multi_Atlas). To download all types,
set to 'all'.

--WOS WITHOUTS filter scans by their types and removed the one with
the specified types. Format: a comma separated string
(E.G : --WOS T1,MPRAGE,REST).

--WOP WITHOUTA filter assessors by their types and removed the one
with the specified types. Format: a comma separated
string (E.G : --WOP fMRIQA,dtiQA).

--quality QUALITIES filter scans by their quality. Format: a comma
separated string (E.G: --quality
usable,questionable,unusable).

(continues on next page)

58 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

--status STATUS filter assessors by their job status. Format: a comma
separated string.

--qcstatus QCSTATUS filter assessors by their quality control status.
Format: a comma separated string.

-c CSVFILE, --csvfile CSVFILE
CSV file with the following header: object_type,projec
t_id,subject_label,session_type,session_label,as_label
. object_type must be 'scan' or 'assessor' and
as_label the scan ID or assessor label.

--rs RESOURCESS Resources you want to download for scans. E.g : --rs
NIFTI,PAR,REC.
--ra RESOURCESA Resources you want to download for assessors. E.g :

--ra OUTLOG, PDF,PBS.
--selectionS SELECTIONSCAN
Download from only one selected scan.By default : no
selection. E.G : project-x-subject-x-session-x-scan
--selectionP SELECTIONASSESSOR
Download from only one selected processor.By default :
no selection. E.G : assessor_label

--overwrite Overwrite the previous data downloaded with the same
command.

--update Update the files from XNAT that have been downloaded
with the newest version if there is one (not working
yet).

--fullRegex Use full regex for filtering data.

-o OUTPUTFILE, --output OUTPUTFILE
Write the display in a file giving to this OPTIONS.
-i, --ignore Ignore reading of the csv report file
-b BIDS_DIR, --bids BIDS_DIR
Directory to store the XNAT to BIDS curated data
-xt, --xnat_tag Download BIDS data with XNAT subjID and sessID
--bond_dir BOND_DIR Download the Key groups and Param groups in BIDS data to BOND_DIR

Example

* Downloads in /home/benjamin/temp the resources NIFTI and PDF for all the scan fMRI and the assessor fM-
RIQA for the project BLSA

[Xnatdownload -p BLSA -d /home/benjamin/temp/ -a fMRIQA -s fMRI -r NIFTI,PDF

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatUpload

Xnatupload will create subject/experiment/scan/resources for a project on XNAT and upload the data into the project
from a folder. Xnatupload provides bulk upload of data to a project on XNAT. You need to provide a specific CSV file
with the following header:

* object_type,project_id,subject_label,session_type,session_label,as_label,as_type,as_description,quality,resource,fpath

where:
* as_label corresponds to assessor or scan label

* as_type corresponds to proctype or scantype

2.11. DAX Command Line Tools 59

mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

* as_description corresponds to procstatus or series description for the scan
* quality corresponds to qastatus or quality for scan
It should be similar to this (project in the example is CIBS-TEST):

object_type,project_id,subject_label,session_type,session_label,as_label,as_type,as_description,quality,resource,fpath
scan,CIBS-TEST,CIBS-TEST_01,MR,CIBS-TEST_01,401, BRAIN2_3DT1,BRAIN2_3DT1,usable,NIFTI,/Users/<USER>/Downloads

Methods

Warning: the project must already exist on XNAT. You can add a new project via the XNAT web GUI. Follow one of
the three methods to upload:

e Number 1 : all the files are in one directory but they need to be rename like this projectID-x-subjectID-x-
experimentID-x-scanID-x-scantype-x-resourcename.extention. Fastest methode but only one file can be upload
in a resource.

e Number 2 : you don’t need to rename all the files but you need to give a specific structure to your directory :
folder/subjectID/experimentID/scanID-x-scantype/ResourcelD/ and put the resources corresponding in it. E.G :
TempDir/BLSA_0000/BLSA_0000_0/scan2-x-fMRI/NIFTI/nifti.nii.gz. It will not be as fast as the first methode
but you can upload more than one file to a resources.

e Option -0 : There is a third choice. If you want to upload files to Xnat on a scan and you don’t want
to create anything, you can use this options -o. It’s for only upload. It’s using something like the first
methodes : put all the files into one folder with a special name : projectID-x-subjectID-x-experimentID-x-
scanID-x-resourcename.extention for assessor, assessor_label-resourcename.extension for assessor (Reminder :
assessor_label = projectID-x-subjectID-x-experimentID-x-scanID-x-process_name or projectID-x-subjectID-x-
experimentID-x-processname).

HARHHH A A RARRRRA R AR RRARAR AR A AR AR RR AR AR AARRARAR AR A AR AARAAA

XnatUpload
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Print a detailed report from XNAT projects.
Examples:
Check the help for examples by running --help

i i i i i
IMPORTANT WARNING FOR ALL USERS ABOUT XNAT:
session_label needs to be unique for each session.
Two subjects can NOT have the same session_label
usage: XnatUpload [-h] [--host HOST] [-u USERNAME] -c CSV_FILE
[--sess SESSION_TYPE] [--report] [--force] [--delete]
[--deleteAll] [--noextract] [--printmodality]
[-o OUTPUT_FILE] [-b BIDS_DIR] [-p PROJECT]

What is the script doing :
* Upload data to XNAT following the csv file information.
csv header:
object_type,project_id,subject_label,session_type,session_label,
as_label,as_type,as_description,quality,resource, fpath

IMPORTANT: YOU NEED TO CREATE THE PROJECT ON XNAT BEFORE UPLOADING.

(continues on next page)

60 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

Examples:

* See Session type:
Xnatupload --printmodality

* Simple upload:
Xnatupload -c upload_sheet.csv

* Upload everything with a session type:
Xnatupload -c upload_sheet.csv --sess PET

* Check the upload:
Xnatupload -c upload_sheet.csv --report

* Force upload:
Xnatupload -c upload_sheet.csv --force

* Upload with delete resource before uploading:
Xnatupload -c upload_sheet.csv --delete

“ Upload with delete every resources for the object (SCAN/ASSESSOR) before uploading:
Xnatupload -c upload_sheet.csv --deleteAll

* Upload BIDS data to XNAT format for scan
Xnatupload -b /tmp/bidsDataset -p PID

* Check BIDS data to XNAT
Xnatupload -b /tmp/bidsDataset -p PID --report

* Force upload BIDS data to upload XNAT
Xnatupload -b /tmp/bidsDataset -p PID --force

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: env XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT.
-c CSV_FILE, --csv CSV_FILE
CSV file with the information for uploading data to XNAT..
—Header: object_type,project_id,subject_label,session_type,session_label,as_label,as_
—,type,as_description,as_quality,resource, fpath
--sess SESSION_TYPE Session type on Xnat. Use printmodality to see the options.

--report Print a report to verify inputs.

--force Force the upload and remove previous resources.

--delete Delete resource files prior to upload.

--deleteAll Delete all resources in object prior to upload.

--noextract Do not extract the zip files on XNAT when uploading a folder.
--printmodality Display the different modality available on XNAT for a session.

-0 OUTPUT_FILE, --output OUTPUT_FILE

File path to store the script logs.
-b BIDS_DIR, --bids BIDS_DIR

BIDS Directory to convert to XNAT and then upload
-p PROJECT, --project PROJECT

Project for BIDS XNAT upload

Extra Examples

» Shows on the terminal what kind of data the command is going to upload and where with method 1

[Xnatupload -d /Path/to/directory --report --upl

* Uploads the files in the directory with the first method

2.11. DAX Command Line Tools 61

DAX Documentation, Release 2.11.1-dev0

[Xnatupload -p projectID -d /Path/to/directory -upl -sess MR J

» Uploads the files in the directory with the second method

{Xnatupload -p projectID -d /Path/to/directory --up2 --sess CT]

» Uploads (only, no creation of subject/exp/scan) all the files from the directory into Xnat even if there is already
a resources (options -force)

[Xnatupload -d /Path/to/directory -o -T 1 --force]

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatReport

Xnatreport will give you a report on one ore more projects. It will show all the sub-
jects/sessions/scans/assessors/resources for the projects chosen. It has several options (accessible with -h or
-help) :

RAR R R AR AR RRRARR AR ARRRAAR R R AR ARRRARRR AR RRAAARRR AR ARARAAA

XnatReport
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Print a detailed report from XNAT projects.
Examples:
Check the help for examples by running --help

HAR R R R AR ARRRRAR AR AR ARRARR R AR AR AR RRRAR AR AR AR RRAAAR AR AR ARARARA

usage: XnatReport [-h] [--host HOST] [-u USERNAME] [-p PROJECTS] [-c CSV_FILE]
[--format FORMAT] [--printformat]

What is the script doing :
* Create a report about Xnat projects.

Examples:
*Report of a project:
Xnatreport -p PID
*“Report with a specific format:
Xnatreport -p PID --format object_type,session_id,session_label,age
*print the format available:
Xnatreport --printformat
*Save report in a csv:
Xnatreport -p PID -c report.csv

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: env XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT.

(continues on next page)

62 Chapter 2. Versions and Installation

mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

-p PROJECTS, --project PROJECTS
List of project ID on Xnat separate by a coma
-c CSV_FILE, --csvfile CSV_FILE
csv fullpath where to save the report.
--format FORMAT Header for the csv. format: variables name separated by comma.
--printformat Print available variables names for the option --format.

Extra Examples

* Creates a report for BLSA and CTONS and will print it on the screen/terminal

[Xnatreport _p BLSA, CTONS]

* Sends the report on BLSA and CTONS to your email address as a csv file. You need to set to variables gmail
address and password used to sent the email in your bashrc

[Xnatreport -p BLSA,CTONS --csv -e email@email.com]

* Writes the report as a “.csv” file that can be open with Excel. If not path specify, /tmp is the place where the
report is save. -t will do the same but in a text file

[Xnatreport -p BLSA,CTONS --csv J

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatSwitchProcessStatus

XnatSwitchProcessStatus is one of the most powerful and used of the Xnat_tools. It allows the user to switch/set the
procstatus (job status) for a specific proctype (type of assessor) in a project. XnatSwitchProcessStatus allows the user
to change the status of several type of assessors in a project that have a specific type or just for all of them.

HARARHHARA AR RRR T ARAHARARBRRERARARARRARARARARAHBRRABARARBRAR SRS

XnatSwitchProcessStatus
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Change assessor job/quality control status.
Examples:
Check the help for examples by running --help

HARRRAHARAH A RRR T ARARARAR B RRR AR RARRRRARARAAARARBRRRBARARARARBARAS

usage: XnatSwitchProcessStatus [-h] [--host HOST] [-u USERNAME]
[--select SELECT] [-x TXT_FILE] [-p PROJECTS]
[--subj SUBJECTS] [--sess SESSIONS] [-s STATUS]
[-f FORMER_STATUS] [-t PROCTYPES]
[-n NEED_INPUTS] [-d] [--qc] [--printstatus]
[--fullRegex] [--restart] [--rerun] [--init]
[--rerundiskq]

What is the script doing :
(continues on next page)

2.11. DAX Command Line Tools 63

mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

*Switch/Set the status for assessors on XNAT selected by the proctype.

Examples:
“See status managed by DAX:
XnatSwitchProcessStatus --printstatus
*Set all fMRIQA to a specific status Error for a project:
XnatSwitchProcessStatus -p PID -s Error -t fMRIQA
*Set all Multi_Atlas that have the status JOB_FAILED to NEED_TO_RUN to have the.
—,processes run again:
XnatSwitchProcessStatus -p PID -f JOB_FAILED -t Multi_Atlas -s NEED_TO_RUN
*Set all VBMQA to NEED_TO_RUN for a project and delete resources:
XnatSwitchProcessStatus -p PID -s NEED_TO_RUN -t VBMQA -d
*Set all VBMQA to NEED_TO_RUN, delete resources, and set linked assessors fMRI_
—Preprocess to NEED_INPUTS:
XnatSwitchProcessStatus -p PID -s NEED_TO_RUN -t VBMQA -d -n fMRI_Preprocess
*Set all dtiQA_v2 ga status to Passed for a project:
XnatSwitchProcessStatus -p PID -s Passed -t dtiQA_v2 --qc
*Set FreeSurfer for a specific project/subject to NEED_INPUTS:
XnatSwitchProcessStatus -p PID --subj 123 -s NEED_INPUTS -t FreeSurfer

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: env XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT.
--select SELECT Give the assessor label that you want to change the status.
-x TXT_FILE, --txtfile TXT_FILE
File txt. Each line represents the label of the assessor which.,
—need to change status.
-p PROJECTS, --project PROJECTS
Project ID on XNAT or list of Project ID
--subj SUBJECTS Change Status for only this subject/list of subjects.
--sess SESSIONS Change Status for only this session/list of sessions.
-s STATUS, --status STATUS
Status you want to set on the Processes. E.G: 'NEED_TO_RUN'
-f FORMER_STATUS, --formerStatus FORMER_STATUS
Change assessors with this former status. E.G: 'JOB_FAILED'
-t PROCTYPES, --type PROCTYPES
Assessor process type you want the status to changed.
-n NEED_INPUTS, --Needinputs NEED_INPUTS
Assessor process type that need to change to NEED_INPUTS because..
—the assessors from -t you changed are inputs to those assessors.

-d, --deleteR Delete the resources on the assessor.

--qc Change the quality control status on XNAT.

--printstatus Print status used by DAX to manage assessors.

--fullRegex Use full regex for filtering data.

--restart Restart the assessors by switching the status for all assessors..
—found to NEED_TO_RUN and delete previous resources.

--rerun Rerun the assessors by switching status to NEED_TO_RUN for..
-.assessors that failed and delete previous resources.

--init Init the assessors by switching status to NEED_INPUTS for.

—,assessors that have been set to NO_DATA.

(continues on next page)

64 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

—,status to NEED_INPUTS from JOB_FAILED and delete previous resources.

--rerundiskq Rerun the assessor that have the status JOB_FAILED: switching.

Extra Examples

» Changes the status for dtiQA_v2 and Freesurfer that have a Failed status to NeedToRun in project BLSA

[XnatSwitchProcessStatus -p BLSA -f Failed -s NeedToRun -t dtiQA_v2,FreeSurfer

]

» Changes the status for dtiQA_v2 and Freesurfer that have a Failed status to NeedToRun in project BLSA and it

will delete all the resources on the assessor

[XnatSwitchProcessStatus -p BLSA -f Failed -s NeedToRun -t dtiQA_v2,FreeSurfer -d

]

* Changes the status for the specific FreeSurfer assessor in BLSA_0000_00 session to NeedToRun and delete the

resources

—NeedToRun -d

XnatSwitchProcessStatus --select BLSA-x-BLSA_0000-x-BLSA_0000_00-x-FreeSurfer -s.,

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatProcessUpload

Xnatprocessupload allows you to upload data for an assessor (you can’t do it that with Xnatupload). You only need to
give the path to the folder where the data are. If the assessor doesn’t exist, it will create one. You need to organize the

data like this :

1) One folder per assessor you want to upload, the name of the folder needs to be the name of the assessor (Remem-
ber: assessor label = projectID-x-subjectID-x-sessionID-x-(scanID if running on a only a scan)-x-processname)

2) Put one folder for each resources you want to upload within the assessor folder with the name folder equal to the

resource name.

3) Put the file you want to upload in it.

BRRH B AR RRRRRA A AR RRRRRRA AR AR RRRRRAA A AR RRRRRAAA RS
XNATPROCESSUPLOAD

#

Developed by the masilab Vanderbilt University, TN, USA.
If issues, email benjamin.c.yvernault@vanderbilt.edu

Parameters :

No Arguments given

Use '"Xnatprocessupload -h" to see the options
HHRFHARHHARHA AR AR HARH ARG HAFHAR AR GHA AR AR AR AR ARG AR R
Usage: Xnatprocessupload [options]

Options:
-h, --help show this help message and exit
-d FOLDER_PATH, --directory=FOLDER_PATH

—want to upload.
--force Force the upload.

What is the script doing : Upload Data on Xnat from a Directory as an Assessor.

Directory containing the different assessors folders that you.

2.11. DAX Command Line Tools

65

mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatSubjectUpdate

Xnatsubjectupdate changes the last update date on XNAT to nothing. It will make the automatic process (in cci package
when it’s setup) to run again on this subject.

HARH AR HRHHRH AR RAARA AR AR A RH AR RHARH AR RAARA AR RAARAARAA
XNATSUBJECTUPDATE

#

Developed by the masilab Vanderbilt University, TN, USA.
If issues, email benjamin.c.yvernault@vanderbilt.edu

Parameters :

No Arguments given

See the help bellow or Use "Xnatsubjectupdate" -h
HARH AR HRHARH AR RAARH AR RHARH AR RH AR AR A RH AR AR A RAARA AR AH
Usage: Xnatsubjectupdate [options]

What is the script doing : Query on Xnat at any level.

Options:
-h, --help show this help message and exit
-p PROJECT_ID, --project=PROJECT_ID
One project ID on Xnat.
-s SUBJECT_LABELS, --subject=SUBJECT_LABELS
Subject label on Xnat or list of them.

Contact - benjamin.c.yvernault@vanderbilt.edu

RedCapReport

Redcapreport is a powertool to extract data from REDCap. It will download the data and put it into a csv file. You can
specify different options to have a precise download.

HAR R R R AR ARRRRA AR AR ARRARA R AR AR RRRAR AR AR R R ARRARAR AR AR ARARARA

RedCapReport
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Create REDCap report for a redcap project.
Examples:
Check the help for examples by running --help

HAR B R R AR A AR R R AR ARRR AR AR RARAR AR AR AR ARARAR AR AR ARAAAAA

usage: RedCapReport [-h] -k KEY [-c CSVFILE] [-x TXTFILE] [-p PROJECT]
[-s SUBJECT] [-e SESSION] [-a ASSESSOR] [-t PROCTYPE]
[-f PROCFILE] [-1 LIBRARIES] [-F] [-L] [--all]

What is the script doing :
*Extract data from REDCap as a csv file.
(continues on next page)

66 Chapter 2. Versions and Installation

mailto:benjamin.c.yvernault@vanderbilt.edu
mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

Examples:
*Save the data in a csv file: Redcapreport -k KEY -c extract_redcap.csv
*print the libraries name: Redcapreport -k KEY -L
*print all fields name and label: Redcapreport -k KEY -F
*Extract values for all record: Redcapreport -k KEY --all
*Filter for specific project/subject/session/assessor type:
Redcapreport -k KEY -p PID -s 109387 -e 109387_1,109387_2 -t FS,TRACULA_v1,dtiQA_v2
*Extract for specific assessor: Redcapreport -k KEY -p PID -a PID-x-109387-x-109387_1-
—x-FS
*Extract for specific libraries type: Redcapreport -k KEY -p PID -1 library_name
*Extract only the fields described in the txt file: Redcapreport -k KEY -x fields.txt

optional arguments:

-h, --help show this help message and exit

-k KEY, --key KEY API Token for REDCap project.

-c CSVFILE, --csvfile CSVFILE
csv file path where the report will be save.

-x TXTFILE, --txtfile TXTFILE
txt file path with per line, the name of the variable
on REDCap you want to extract.

-p PROJECT, --project PROJECT
Extract values for processes for the projects chosen.
E.G: projectl,project2

-s SUBJECT, --subject SUBJECT
Extract values for processes for the subjects chosen.
E.G: subjectl,subject2

-e SESSION, --session SESSION
Extract values for processes for the sessions chosen.
E.G: sessionl,session2

-a ASSESSOR, --assessor ASSESSOR
Extract values for processors chosen. E.G:
processorl,processor?2

-t PROCTYPE, --proctype PROCTYPE
Extract values for processes types chosen. E.G:
fMRIQA,dtiQA

-f PROCFILE, --procfile PROCFILE
file path with each line one processor label. Extract
values for processes types chosen.

-1 LIBRARIES, --libraries LIBRARIES
Extract values for only the libraries specify. Check
the project for the libraries name. Switch spaces by
'_'" and everything lower case. E.G:

dti_quality_assurance. By default: all libraries

-F, --fields Print all field names and labels
-L, --printlib Print all libraries names for the project.
--all Extract values for all records.

Contact - benjamin.c.yvernault@vanderbilt.edu

2.11. DAX Command Line Tools 67

mailto:benjamin.c.yvernault@vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

XnatCheckLogin

XnatCheckLogin allows the user to check that environment variables are set appropriately. It will let you know in a
few seconds if your logins are good or not.

usage: XnatCheckLogin [-h] [--host HOST]

Set and Check the logins for XNAT.

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT.

Xnatinfo

Xnatinfo is the tool to get fast statistics information on a project (number of subjects/sessions/scans/assessors and the
status of the assessors). There is only one way to call Xnatinfo:

[iddegidalsdib s St bbbl adddas s
Xnatinfo

Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google. com/forum/#! forum/vuiis-cci
Usage:

Display information on a XNAT project.
Examples:

Check the help for examples by running --help
i i

HOoR FH W W W W R
oW R W W R W R W

usage: Xnatinfo [-h] [--host HOST] [-u USERNAME] [-x OUTPUT_FILE] [-f] [-r]
[--ignoreUnusable] [--ignoreScans]
project

What is the script doing :
* Generate a report for a XNAT project displaying scans/assessors
information.

Examples:
* See the information for project TEST:
Xnatinfo TEST

positional arguments:
project Project ID on XNAT

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: env XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT.
-x OUTPUT_FILE, --filetxt OUTPUT_FILE
Path to a txt file to save the report
-f, --failed Add this flag to print out failed jobs

(continues on next page)

68 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

-r, --running Add this flag to print out running jobs
--ignoreUnusable Ignore print statement of unusable scans
--ignoreScans Ignore print statement of scans

Xnatsessionupdate

Xnatsessionupdate resets the last update date on XNAT on a session. It will force DAX update scripts to update the
session. This tool is for advanced users and managers of projects on XNAT.

RAR R R AR AR RRRAR LR AR ARRRAAR AR AR AR RRRAARR AR ARAAARAR AR ARARARA

XnatSessionUpdate
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Reset sessions to be seen by the nex dax_update.
Examples:
Check the help for examples by running --help

HAR R R R A ARRRRA AR AR ARRARA R AR RRRAR AR AR R AR RRARAR AR AR ARARAAA

usage: XnatSessionUpdate [-h] [--host HOST] [-u USERNAME] -p PROJECTS
[-s SESSION] [-n] [-x TXT_FILE] [-a]

What is the script doing :
* Reset sessions last update date to update the sessions during
the next dax_update.

Examples:
*“Reset all sessions:
Xnatsessionupdate -p PID --all
*“Reset some sessions :
Xnatsessionupdate -p PID -s 109374,109348
*Reset for the sessions that have assessors NEED_INPUTS:
Xnatsessionupdate -p PID -n

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: env XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT.
-p PROJECTS, --project PROJECTS
Projects ID on Xnat.
-s SESSION, --session SESSION
Session label on Xnat or list of them.
-n, --needinputs Change the subject last update date for all the subject with.
—processes that have a job status equal to NEED_INPUTS.
-x TXT_FILE, --txtfile TXT_FILE
File txt with at each line the label of the assessor or just the.
—.Session label where the Subject date need to be changed. E.G for label: project-x-

(continues on next page)

2.11. DAX Command Line Tools 69

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

—,subject-x-experiment-x-scan-x-process_name.
-a, --all Change for all sessions.

BIDSMapping

BIDSMapping tool allows the user to create, update or replace rules/mapping at the project level on XNAT. These rules
are essential as they entail the link between scan type or series description on XNAT to the BIDS datatype, task type
and repetition time. XnatToBids function uses these mapping at the project to transform XNAT data into the BIDS
compliant data with BIDS filenames and folder structure.

RARBHHHHHAHRARR R HAAATRRRR R R HAAHARR R H A A AR AR RS A A AR

BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Examples:
#

Check the help for examples by running --help
HHHBHAH AR HHBH R R B ARG AR HRHARARH AR AR AR H ARG AR AR H AR AR AR A AR AR AR A

usage: use "BIDSMapping --help" for more information

What is the script doing :
*Uploads BIDS datatype, tasktype and repitition time mapping to XNAT project level.
—using the different OPTIONS.

Examples:
*Create a new datatype mapping for scan_type of XNAT scans:
BIDSMapping -p PID --xnatinfo scan_type --type datatype --create /tmp/projectID_
—.datataype.csv
*The correct format for /tmp/projectID_datataype.csv
scan_type,datatype
Resting State, func
*Create a new datatype mapping for series_description of XNAT scans:
BIDSMapping -p PID --xnatinfo series_description --type datatype --create /tmp/
—projectID_datataype.csv
*Create a new tasktype mapping for scan_type of XNAT scans:
BIDSMapping -p PID --xnatinfo scan_type --type tasktype --create /tmp/projectID_
—tasktype.csv
*Replace tasktype mapping for scan_type of XNAT scans: (It removes the old mapping..
—and upload the new mapping)
BIDSMapping -p PID --xnatinfo scan_type --type tasktype --replace /tmp/projectID_
< tasktype.csv
*Update tasktype mapping for scan_type of XNAT scans: (This is ONLY add new mapping.
—rules, CANT remove rules use --replace to remove and add mapping rules)
BIDSMapping -p PID --xnatinfo scan_type --type tasktype --update /tmp/projectID_
—tasktype.csv
*Create default datatype mapping for scan_type of XNAT scans: (There is no default.
—.for series_description use --create)

(continues on next page)

70 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

BIDSMapping -p PID --xnatinfo scan_type --type datatype --create_default
*Download the current mapping on XNAT:
BIDSMapping -p PID --xnatinfo scan_type --type datatype --download /tmp/download.
—CSV
*Download the scan_types on project on XNAT:
BIDSMapping -p PID --template /tmp/scan_type_template.csv

optional arguments:
-h, --help show this help message and exit
--host HOST Host for XNAT. Default: using $XNAT_HOST.
-u USERNAME, --username USERNAME
Username for XNAT. Default: using $XNAT_USER.
-0 LOGFILE, --logfile LOGFILE
Write the display/output in a file given to this OPTIONS.
-p PROJECT, --project PROJECT
Project to create/update BIDS mapping file
-t TYPE, --type TYPE The type of mapping either datatype, tasktype or repetition_time_
-.sec
-x XNATINFO, --xnatinfo XNATINFO
The type of xnat info to use for mapping either scan_type or.
—.series_description
-c CREATE, --create CREATE
Create the given BIDS new mapping file at project level. (EG. --
—.create <mappingfile>.csv)
Default create creates the default mapping at project file. (EG..
—--Ccreate)
csvfile EG:
scan_type,datatype
T1W/3D/TFE, anat
Resting State, func
-cd, --create_default
Default create creates the default mapping at project file. (EG..
—.--create_default)
-ud UPDATE, --update UPDATE
Update the existing BIDS mapping file at project level. (EG. --
—update <mappingfile>.csv)
This option can only add rules
-rp REPLACE, --replace REPLACE
Replace the existing BIDS mapping file at project level. (EG. --
—.replace <mappingfile>.csv)
This option can remove and add new rules
-rv REVERT, --revert REVERT
Revert to an old mapping from a specific date/time. (EG: --
—revert 10-17-19-21:32:15
or --revert 10-17-19). Check the LOGFILE at project level for.
—the date
-d DOWNLOAD, --download DOWNLOAD
Downloads the current BIDS mapping file (EG: --download
—.<foldername>)
-tp TEMPLATE, --template TEMPLATE
Default mapping template (EG: --template <template file>)

For a walkthrough tutorial of BIDSMapping check out https://dax.readthedocs.io/en/latest/BIDS_walkthrough.html

2.11. DAX Command Line Tools 71

https://dax.readthedocs.io/en/latest/BIDS_walkthrough.html

DAX Documentation, Release 2.11.1-dev0

Contact - praitayini.kanakaraj @ vanderbilt.edu

XnatBOND

XnatBOND takes in a BIDS directory and detects the Key and Parameter Groups. This tool can be used to Modifying
Key and Parameter Group Assignment. For more details on the package used look at https://bids-bond.readthedocs.io/
en/latest/readme.html

RAR R R AR ARRRARRRRR AR RRARAR AR AR RRRARARRR R RRARARRRA AR

XnatBond
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Generate and alternate key params in BIDS using BOND
Examples:
Check the help for examples by running --help

RAR R R AR RRRA AR AR ARRRAR R LR AR AR RRRAR AR AR AR RRARAR AR AR AR

usage: XnatBOND [-h] --bids_dir BIDS_DIR [-b BOND_DIR] [-m keyparam_edited keyparam_
—.files new_keyparam_prefix] [-o LOGFILE]

What is the script doing :

*“Generate the csv files that have the summary of key groups and param groups..
—from the

bidsdata and modify them in the bids data.

Examples:

*Generate orginial key and parameter
XnatBOND --bids_dir BIDS_DIR

*Update the key and parameter groups:

XnatBOND --bids_dir BIDS_DIR

optional arguments:
-h, --help show this help message
--bids_dir BIDS_DIR BIDS data directory.
-b BOND_DIR, --bond_dir BOND_DIR

BOND data directory.

groups:
--bond_dir BOND_DIR

--modify_keyparam

and exit

-m keyparam_edited keyparam_files new_keyparam prefix, --modify_keyparam keyparam_ edited.

—keyparam_files new_keyparam_prefix

Values to modify the keyparam in bids.

-0 LOGFILE, --logfile LOGFILE

Write the display/output in a file given to this OPTIONS.

72

Chapter 2. Versions and Installation

mailto:praitayini.kanakaraj@vanderbilt.edu
https://bids-bond.readthedocs.io/en/latest/readme.html
https://bids-bond.readthedocs.io/en/latest/readme.html

DAX Documentation, Release 2.11.1-dev0

2.12 DAX Executables

2.12.1 Table of Contents

—

DAX Packages

How Does it Work?

DAX Settings

How to Write a ProjectSettings.py File
DAX Executables

DAX Build

DAX Update Tasks

DAX Launch

R A L o

DAX Upload

-
e

DAX Manager

DAX Packages

‘We have been developing a high throughput pipeline processing and quality assurance environment based on Washing-
ton University’s XNAT platform. This system has been deployed as the primary data archival platform for all VUIIS
studies. This pipeline has been implemented in a python package called Distributed Automation for XNAT (DAX).
Data processing occurs on the Vanderbilt Advanced Computing Center for Research and Education (ACCRE). DAX has
been developed with a series of settings making the package portable on any batch scripting system. Each customized
module is a spider that performs an image processing task using a variety of open source software.

DAX is available on github at https://github.com/VUIIS/dax and be installed with “pip install dax”.

2.12.2 How Does it Work?

DAX consists of three main executables that communicates with an XNAT system to process and archived imaging
data. XNAT has an object implemented as a child of a session that is called an Assessor that corresponds to processed
data. By reading the database on a project basis, the different executables will generate the assessors, check for inputs,
run the scripts on the cluster as a job, check on the status of the jobs, and upload data back to XNAT. DAX will also
maintain data on REDCap. DAX uses a settings files to specify various customizations of the DAX installation and to
specify which processes each project should run and any customizations to the processes.

2.12.3 DAX Settings

Inside the package DAX, there is a dax_settings.py file. This file contains variables that can be set by the user such
as the commands used by your cluster, the different paths (the upload directory, root job, etc...), email settings, or
REDCap settings for dax_manager.

By default, the package is set to use the settings used by Vanderbilt University. It’s set for SLURM cluster.

2.12. DAX Executables 73

https://github.com/VUIIS/dax

DAX Documentation, Release 2.11.1-dev0

2.12.4 How to Write a ProjectSettings.yaml File

Two of the DAX executables will need a ProjectSettings.py file to run. This file is a python script providing the de-
scription of each modules/processors that need to run for a project or a list of projects. You can learn on how to write

a ProjectSettings.yaml file here: Writing a settings file.

DAX Executables

The main executables in the DAX package are:

* dax build

* dax update
e dax launch
* dax upload

* dax manager

See image below to understand the role of each executable:

Managed by:

dax_buikd

dae_kanch

dax_updabe_tasks

dax_upload

dax_update_lasks

Life Cycle of a DAX Task

Maw MEED IMPUTS
Task

1

MEED TO_FUN

quews full 7

READY TO_UPLOAD

READY_TO _COMPLETE |

i

| COMPLETE

%iﬁnulsmiﬂ? ' .

74

Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

2.12.5 DAX Build

dax build will build all the projects in your ProjectSettings.yaml file. It will check each session of your project and run
the different modules (e.g: converting dicom to nifti, generating preview, extracting physlog, etc...) and generates the
assessors from the processors set in the ProjectSettings.yaml file.

2.12.6 DAX Update
dax update handles assessors for all the projects in your ProjectSettings.yaml file. It will get the list of all the assessors
that are “open”, meaning with a status from the list below and update each assessors status.
Open assessors status:
* NEED_TO_RUN
UPLOADING
JOB_RUNNING
READY_TO_COMPLETE
JOB_FAILED

2.12.7 DAX Launch

It will submit jobs to the cluster for each assessors that have the status NEED_TO_RUN.

2.12.8 DAX Upload

Each job on the cluster will not upload data directly to XNAT but copies the data to a temporary folder on the computer.
dax upload will read each processed data from this folder and will upload them on XNAT under an assessor that was
previously created by dax build.

2.12.9 DAX Manager

dax manager allows users to manage multiple projects from REDCap (https://redcap.vanderbilt.edu). It will automati-
cally generate a ProjectSettings.yaml file from the REDCap database and will run dax build/update/launch/upload from
those files.

On the REDCap project, each record corresponds to a project. Each library is a module or a processor that can be
enabled and customized by the user.

2.13 Manage a Project

2.13.1 Table of Contents

1. Check Why an Assessor Failed
2. Set/Reset Assessors to Run
3. Run an XnatCheck on Your Project

4. Reset Sessions to Force DAX to Update Again

2.13. Manage a Project 75

https://redcap.vanderbilt.edu

DAX Documentation, Release 2.11.1-dev0

5. Run dax_update Manually on a Project (Advanced Users)
6. Run dax_launch Manually on a Project (Advanced Users)
7. Common and Spurious Errors You May Encounter
8. Unable to Read Experiments for Project: XXXXXXXX
9. Restarting a Job

10. Project Settings Files

11. Adding Directories Caused by OSError

12. Settings Directory is Missing from tmp Folder

13. Verifying the Spider is Waiting to get Uploaded to XNAT

Check Why an Assessor Failed

Each assessor has a procstatus. If you look at a session view and specifically at the assessor list, you can see the column
Procstatus.png (see below):

Processing
Type POF Piroe: Date Proc 1D Job Fatus Q2 Siadus Fllas
WERICLA, B zoteorao WVIFS TP VUS TP 1 VRS TP 1m0 B, COMPLETE Mceds A, Snow Counts
il 1o r: A0Ta-UrIT VUSETP-2- VS TP T-x- VIS TP Ta-m-00 - Multi_Allss COMPLETE Mleage: G4, Show Counts
Fal B E‘ i a-0r-1 WS TPa- VST -2 VUS TP 18300 -2-FSL_Fiest COMPLETE Paraie 1A S Counis
E_.. IE-0T1 WUSTP-VUETA -2 VUSTP1a-ainim_tass_nag COMPLETE Maads 04 S Counts
r_' 010701 WUSSTP--WUSTP k- VIS TP la-x-ronngid_neg_to ATLAS JOB FAILED Job Panding Eniow Counts
r_. 010701 WIS TP-SE TP 1 VU TP Ta-x-¥Whise_MaSer_Stamper COMPLETE Mg O, Enow Counis
Mo POF 2004-07-02 WUSTP-2-VUSTP1-2-VUS TP 18- TRACULA w1 KEED_INPUTS Mo good FS

Mo POF 20040708 WUSTP-2-VUSTP -5

ST 1a-a-TESS_pe MEED_INPLITS Mo dicA fousd Soow

B 0ne-0r-24 VUSTP-2-VUSTP-2-VUSTP 18-a- 1001-2-0008_vE COMPLETE emads Q4
Mo POF Z044-07-25 VUETP-x- 1-5-VUIETP 1a-5-F5 COMPLETE Job Fanding Sz Codints
Mo PDF 20081200 WUSTP- S-WLETP1a-eL8T w1 M0 DATA Mo Flar foind Snow Counts
r-_.. Joia-12.458 VUSTP-2-WVIETP- - VUETP 1 a-x- 1001 -x-0u0s, w3 COMPLETE Paaiis LA, S Codints
r-_.. A0 WUISTPWESTP - VLS TP 1a-x-ctis_ Mk COMPLETE Mz s LA Emow Counts
Mg POF Z074-17-10 VUG TP-- WS TP T- -V TP Tara-fM R _Preprocess ME_DATA. Mo ME found 5how Counts

M POF 2014-11-10 VS TP--WSETPT- - VU TP 1a-x- 1007 -x-Beddipost_v1 REED_INPUTS Mo diilA, passsd 55
Mo POF 2005-01-13 WUSTP-2-VUSTP1-2-VUS TP 18-a-LST_vDEWD m_DATA Mo Flar found Soow Counts

An assessor with the status JOB_FAILED means that the script failed to run on the cluster. To understand why, the
user can look at the OUTLOG file under the assessor. If the file is not present, you can check the Uploading queue on
your gateway running dax in the OUTLOG folder. When you have located the file, you can see the error generated by
the script and try to solve them.

Set/Reset Assessors to Run

If you need to set an assessor to run or reset a large number of assessors to run because they failed, you can
use XnatSwitchProcessStatus. We are going to reset all the dtiQA_v2 assessors on our test project VUSTP to
NEED_TO_RUN because we want them to rerun:

* XnatSwitchProcessStatus -p VUSTP -s NEED_TO_RUN -t dtiQA_v2 -d

-d means that we want to delete the previous resources. In an other example, we want to run again all the fMRIQA that
failed because we fixed the problem:

» XnatSwitchProcessStatus -p VUSTP -s NEED_TO_RUN -t fMRIQA -f JOB_FAILED -d

76 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

Sometimes, an assessor is used as an input for an other assessor (TRACULA uses FreeSurfer outputs). If you rerun a
FreeSurfer for example on the subject number 1, you might want to set the TRACULA to NEED_INPUTS to wait for
FreeSurfer to have the valid inputs to rerun as well. To do so, you can use the options -n following by the proctype:

» XnatSwitchProcessStatus -p VUSTP —subj VUSTP1 -s NEED_TO_RUN -t FS -d -n TRACULA_v1

You should be able now to restart all the jobs you want/need on XNAT.

Run an XnatCheck on Your Project

Xnatcheck is useful to get a list of assessors from XNAT that fit specific criteria. For example, you want to get the list
of all the assessors that failed to restart, you can use the following command:
* Xnatcheck -p VUSTP ilters procstatus=JOB_FAILED

The result is the following:

RARBHHHHBRRRRRRR BB GRRRRRRRR BB RRRRRRRR R GRRRRRRRR B RRRRARAA
XNATCHECK
##

Usage:

Check XNAT data (subject/session/scan/assessor/resource)

Parameters :

Project(s) -> VUSTP

Resource Delimiter -> --

filters String -> ['procstatus=JOB_FAILED']

o B B a a/aa saa aaraa

INFO: Creating your filters from the options.
* regular filter: procstatus = JOB_FAILED

INFO: extracting information from XNAT:
WARNING: extracting information from XNAT for a full project might take some time.
Please be patient.

- VUSTP
INFO: Number of XNAT object found after filters:

| VUSTP | 18 |

object_type,project_id,subject_label,session_type,session_label,as_label,as_type,
as_description,as_quality

assessor,VUSTP,VUSTP1,MR,VUSTP1a,
VUSTP-x-VUSTP1-x-VUSTPla-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor,VUSTP,VUSTP3,MR, VUSTP3a,
VUSTP-x-VUSTP3-x-VUSTP3a-x-T1-x-FSL_First,FSL_First,JOB_FAILED,
Job Pending

assessor, VUSTP,VUSTP3,MR, VUSTP3a,
VUSTP-x-VUSTP3-x-VUSTP3a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor,VUSTP,VUSTP4,MR, VUSTP4a,

(continues on next page)

2.13. Manage a Project 77

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

VUSTP-x-VUSTP4-x-VUSTP4a-x-MPRAGE-x-VBMQA,VBMQA, JOB_FAILED,
Job Pending

assessor, VUSTP,VUSTP4,MR, VUSTP4a,
VUSTP-x-VUSTP4-x-VUSTP4a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor,VUSTP,VUSTP5,MR, VUSTP5a,
VUSTP-x-VUSTP5-x-VUSTP5a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor, VUSTP,VUSTP6,MR, VUSTP6a,
VUSTP-x-VUSTP6-x-VUSTP6a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor,VUSTP,VUSTP7,MR, VUSTP7a,
VUSTP-x-VUSTP7-x-VUSTP7a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor,VUSTP,VUSTP8,MR, VUSTP8a,
VUSTP-x-VUSTP8-x-VUSTP8a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor, VUSTP,VUSTP8,MR, VUSTP8Db,
VUSTP-x-VUSTP8-x-VUSTP8b-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor, VUSTP,VUSTP9,MR, VUSTP9a,
VUSTP-x-VUSTP9-x-VUSTP9a-x-LST_v1,LST_v1,JOB_FAILED, Job Pending

assessor,VUSTP,VUSTP9,MR, VUSTP9a,
VUSTP-x-VUSTP9-x-VUSTP9a-x-LST_vDEV®,LST_vDEVQ, JOB_FAILED, Job Pending

assessor, VUSTP,VUSTP9,MR, VUSTP9a,
VUSTP-x-VUSTP9-x-VUSTP9a-x-MPRAGE-x-VBMQA, VBMQA, JOB_FAILED, Job Pending

assessor, VUSTP,VUSTP9,MR, VUSTP9a,
VUSTP-x-VUSTP9-x-VUSTP9a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

assessor,VUSTP, VUSTP9,MR, VUSTP9b,
VUSTP-x-VUSTP9-x-VUSTP9b-x-LST_v1,LST_v1,JOB_FAILED, Job Pending

assessor,VUSTP,VUSTP9,MR, VUSTP9b,
VUSTP-x-VUSTP9-x-VUSTP9b-x-LST_vDEV®,LST_vDEVO®, JOB_FAILED, Job Pending

assessor, VUSTP,VUSTP9,MR, VUSTPY9D,
VUSTP-x-VUSTP9-x-VUSTP9b-x-MPRAGE-x-VBMQA, VBMQA, JOB_FAILED, Job Pending

assessor,VUSTP, VUSTP9,MR, VUSTP9b,
VUSTP-x-VUSTP9-x-VUSTP9b-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
JOB_FAILED, Job Pending

You can then check the different errors for each assessor and restart the assessors using XnatSwitchProcessStatus as
we saw earlier. You can also modify the header of the output to have more information (see available header name
with -printformat). For example, to see the walltime and memory used as well as the starting date for the jobs that are
COMPLETE for the session VUSTP1a:

e Xnatcheck -p VUSTP filters procstatus=COMPLETE session_label=VUSTPla —format asses-
sor_label,proctype,procstatus,walltimeused,memused,jobstartdate

The output now for the csv is:

object_type,assessor_label,proctype,procstatus,walltimeused,memused, jobstartdate
assessor,VUSTP-x-VUSTP1-x-VUSTPla-x-1001-x-dtiQA_v2,dtiQA_v2,COMPLETE,
17:02:43,3127140,2015-02-04

(continues on next page)

78 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

assessor, VUSTP-x-VUSTP1-x-VUSTPla-x-1001-x-dtiQA_v3,dtiQA_v3,COMPLETE,
16:43:45,3135972,2015-02-04

assessor, VUSTP-x-VUSTP1-x-VUSTPla-x-301-x-FSL_First,FSL_First,COMPLETE,
00:22:17,1613624,2015-02-04

assessor, VUSTP-x-VUSTP1-x-VUSTPla-x-301-x-Multi_Atlas,Multi_Atlas,COMPLETE,
1-10:40:20,5585220,2015-02-04

assessor,VUSTP-x-VUSTP1-x-VUSTPla-x-301-x-VBMQA, VBMQA, COMPLETE,
00:20:13,1380344,2015-02-19

assessor, VUSTP-x-VUSTP1-x-VUSTPla-x-FS,FreeSurfer,COMPLETE, , ,2014-09-22

assessor, VUSTP-x-VUSTP1-x-VUSTPla-x-White_Matter_Stamper,White_Matter_Stamper,
COMPLETE,01:57:14,2254504,2015-02-16

assessor, VUSTP-x-VUSTP1-x-VUSTPla-x-dtiQA_Multi,dtiQA_Multi,COMPLETE,
16:35:51,3109260,2015-02-04

assessor, VUSTP-x-VUSTP1-x-VUSTPla-x-intra_sess_reg,intra_sess_reg, COMPLETE,
00:03:34,318328,2015-02-04

Run dax_update Manually on a Project (Advanced Users)

You can run manually dax_update on a project if you want to update directly a session and not wait for the next time it
will run. To do so, you will need to use this command line:

» dax_update ProjectSettings.yaml —project PID —sessions S_ID1,S_ID2
Run dax_launch Manually on a Project (Advanced Users)

You can run manually a dax_launch on a project if you want to submit jobs (assessors with the status NEED_TO_RUN)
to the cluster and not wait for the next time it automatically runs. To do so, you will need to use this command line:

 dax_launch ProjectSettings.py —project PID —sessions S_ID1,S_ID2
Common and Spurious Errors You May Encounter

PyXNAT is still a work in progress. As such, you may encounter errors that make little to no sense. A common one
that you may get is this:

DatabaseError:

2.13.2 Unable to Read Experiments for Project: XXXXXXXX

You can get technical details here. Please continue your visit at our home page. Where XXXXXXX will be your XNAT
Project ID (like VUSTP). Chances are likely that users don’t have access to your project. It’s a quick fix.

2.13. Manage a Project 79

DAX Documentation, Release 2.11.1-dev0

2.13.3 Restarting a Job

Jobs can be restarted using XnatSwitchProcessStatus:
¢ XnatSwitchProcessStatus -s NEED_INPUTS -d —select

Note that you can also switch the process status to NEED_INPUTS in the GUI but the associated data is NOT deleted.
Thus, the preferred way is to use XnatSwitchProcessStatus.

2.13.4 Project Settings Files

The dax_project_settings need to specify an attribute change in the processor variables from the project_settings file.
Consider the yaml script from the snapshot. To change scan types in a project settings file, we do:

- name: multi_atlas_v3_0_0_VUIIS_ABCD
filepath: Multi_Atlas_v3.0.0_processor.yaml
arguments:
inputs.xnat.scans.scan_tl.types: "ABCD_T1W3D"

To change the attributes from the “resources” section from the processor, the arguments would be passed thus:
* inputs.xnat.scans.resource.tl_file_fmatch:”*.nii.gz”
and not as

* inputs.xnat.scans.resource.NIFTI.fmatch

2.13.5 Adding Directories Caused by OSError (only relevant to LDAX)

[Errno 2] No such file or directory from CRITICAL messages in past 24 hours email

Usually check /scratch/SUSER/Modules_tmp, which is based on the project name, not the file name. For instance, this
ginko file may have something like the following:

e OSError: [Errno 2] No such file or directory: ‘/scratch/vuiisccidev/Modules_tmp/MSSeg2016/MSSeg2016_preview_nifti_ginko_s

* The MSSeg2016 and MSSeg2016/MSSeg2016_preview_nifti_ginko_settings directories would need to be cre-
ated

2.13.6 Settings Directory is Missing from tmp Folder (only relevant to LDAX)

We need to check REDCap. Settings files should not be in the /tmp/ folder. Normally, they would be somewhere like:

['/scratch/vuiisccidev/Modules_tmp/MSSeg2016/MSSeg2016_preview_nifti_ginko_settings' J

2.13.7 Verifying the Spider is Waiting to get Uploaded to XNAT

* The upload queue is different from the ACCRE queue
* The ACCRE cluster is not involved in the upload process

* Upload happens from the following directory:

[/scratch/$USER/Spider_up10ad_dir J

80 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

2.14 BIDSMapping: Walkthrough Tutorial

2.14.1 Introduction

This is a tutorial for using BIDSMapping tool, a DAX command line tool (https://github.com/VUIIS/dax). The
BIDSMapping tool allows the user to create, update or replace rules/mapping at the project level on XNAT. For using
BIDSMapping tool you require

* the lastest verion of DAX installed. Please check https://dax.readthedocs.io/en/latest/installing_dax_in_a_
virtual_environment.html to install DAX in a virtual environment.

* A project on XNAT with imaging data.

* A dcm2niix module turned on for the project. Preferred if the dem?2niix_bids module is turned on for the project.
The dem?2niix_bids will add the required json sidecar. However, the BIDSMapping tool is capable of adding the
json sidecar when missing.

2.14.2 Table of Contents

—

Step 1 Mapping Datatype and Scans

Step 2 Upload Datatype Mapping to XNAT

Step 3 Check Project Level File Manager

Step 4 Mapping Tasktype and Scans

Step 5 Upload Tasktype Mapping to XNAT

Step 6 Mapping Repetition Time and Scans

Step 7 Upload Repetition Time Mapping to XNAT
Step 8 Check Project Level File Manager

Step 9 Mapping Perfusion Imaging Type

Step 10 Upload Perfusion Type to XNAT

© Y ® N ok WD

—_ =
—

. Step 11 Check Project Level File Manager

._
N

Additional Useful BIDSMapping Tool Options

—
W

. Step 12 Correct Old Mapping

=

Step 13 Replace Existing Mapping
. Step 14 Check Corrected LOGFILE
. Step 15 Add New Mapping

—_— = =
~N O W

. Step 16 Update Existing Mapping
. Step 17 Check Updated LOGFILE

—
(o]

2.14. BIDSMapping: Walkthrough Tutorial 81

https://github.com/VUIIS/dax
https://dax.readthedocs.io/en/latest/installing_dax_in_a_virtual_environment.html
https://dax.readthedocs.io/en/latest/installing_dax_in_a_virtual_environment.html

DAX Documentation, Release 2.11.1-dev0

Step 1 Mapping Datatype and Scans

You need to create a mapping for BIDS datatype and scans on XNAT. First, create the CSV file of the mapping that
you would like to upload to XNAT.

Open a CSV file

[(dax) $ vim (or nano or any editor you like) datatype.csv

Type the series_description and datatype you want to map

series_description,datatype
T1,anat

gonogol, func

gonogo?2, func

capl, func

cap2, func

mid1, func

mid2, func

mid3, func

Please note, instead of scan_type in column 1 header series_description can also be used. Make sure the scan_type or
series_description is from the scan on XNAT. Image below shows where the information can be found on XNAT

Scans

Bulk Actions: Download

Scan Usability Files Note

101 SURVEY WIP SURVEY 1.4 MB in 2 files
401 L T1 usable 38.9 MB in 7 files
501 fMRI M usable 192.2 MB in 8 files
601 fMRI gonogo2 usable 251.2 MB in 9 files
701 fMRI cap1 usable 242.1 MB in 10 files

Datatype column correspond to the BIDS datatype folder (https://bids.neuroimaging.io/) for the scan to be in. BIDS
datatype folder is either - anat (structural imaging such as T1,T2,etc.), - func (task based and resting state functional
MRI), - fmap (field inhomogeneity mapping data such as fieldmaps) or - dwi (diffusion weighted imaging). For
more information checkout page 4 and 8 in https://www.biorxiv.org/content/biorxiv/suppl/2016/05/12/034561.DC4/
034561-1.pdf

Step 2 Upload Datatype Mapping to XNAT

This step allows the user to upload datatype mapping rules to XNAT. These mapping rules are then later used by
XnatToBids function to organise the scan from XNAT in the respective BIDS datatype folder. Upload the CSV file
(from Step 1) with the mapping rules to XNAT project level using BIDSMapping —create. If scan_type is used as
column 1 header in Step 1, use —xnatinfo scan_type option.

(dax) $ BIDSMapping --project ZALD_TTS --create datatype.csv --type datatype --xnatinfo..
—.series_description

HHRRRBHARAHBRRR T ARARARA AR RRERARARRRRARARA AR RAHBRRRBARARARARBRRAS

BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.

(continues on next page)

82 Chapter 2. Versions and Installation

https://bids.neuroimaging.io/
https://www.biorxiv.org/content/biorxiv/suppl/2016/05/12/034561.DC4/034561-1.pdf
https://www.biorxiv.org/content/biorxiv/suppl/2016/05/12/034561.DC4/034561-1.pdf

DAX Documentation, Release 2.11.1-dev0

(continued from previous page)

If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> datatype
Create mapping with -> datatype.csv

HAR R R R AR A AR AR RRRARA R AR AR ARRRAR AR AR AR RRARAR AR AR ARAARAAA

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:

The info used from XNAT is series_description

CSV mapping format is good

date 16-06-20-20:05:56

CREATED: New mapping file 06-16-20-20:05:56_datatype.json is uploaded

Step 3 Check Project Level File Manager

Check Manage Files on XNAT project level. There will be two Resources created; one for XNAT type and the other for
datatype mapping. XNAT type will have text file with either scan_type or series_description in it. Datatype mapping
will have a .json file of the mapping and a LOGFILE.txt with the logging of rules added and deleted.

ZALD_TTS

I -
m’ Access File Manager .

— =) L1 Resources

1D: ZALD_T) 21 NDAR_template O files, 0 bytes @

DsscEtions ﬁ';zjrz‘l’“ () (3 submitted O files, 0 bytes [1
Institute — (@ (1 BIDS_xnat_type 1 files, 9 bytes @ 'nd
Study, re xnat_type.txt U U (U) 9 bytes @ es

PI: Zald, D: —[¥) 1 BIDS_datatype 2 files, 478 bytes @

Investigators: Landma LOGFILE.txt U U (U) 292 bytes @ -

06-16-20-20:05:56_datatype.json U U (U) 186 bytes @

Steps 4 through 8 are ONLY FOR FUNCTIONAL SCANS
Step 4 Mapping Tasktype and Scans

For functional scans, tasktype mapping is necessary. These mapping rules are to map the scan in XNAT to the task.
The task refers to the task performed by the subject during the MRI acquisition (For example: rest for resting state).
The task could be any activity. The task is required for BIDS filenaming. For more information check out page 11 in
https://www.biorxiv.org/content/biorxiv/suppl/2016/05/12/034561.DC4/034561- 1.pdf

Similar to Step 1, create tasktype CSV mapping.

2.14. BIDSMapping: Walkthrough Tutorial 83

https://www.biorxiv.org/content/biorxiv/suppl/2016/05/12/034561.DC4/034561-1.pdf

DAX Documentation, Release 2.11.1-dev0

[(dax) $ vim (or nano or any editor you like) tasktype.csv

series_description, tasktype
gonogol, gonogo
gonogo2,gonogo

capl,capl

cap2,cap?

midl,mid1

mid2,mid2

mid3,mid3

Step 5 Upload Tasktype Mapping to XNAT

This step allows the user to upload tasktype mapping rules to XNAT. The XnatToBids in DAX uses this tasktype
mapping to name the funcational scans in the BIDS folder. If there is no tasktype mapping the BIDS conversion will
fail for functional scans.

Similar to Step 2, upload the Step 4 CSV mapping to XNAT using BIDMapping tool.

(dax) $ BIDSMapping --project ZALD_TTS --create tasktype.csv --type tasktype --xnatinfo.
—series_description

HAR R R AR AR RRRAR AR ARRAAAR R R AR AR RRRARRR AR RARRAAARRR AR AARARARS

BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> tasktype
#

Create mapping with -> tasktype.csv
HHRRHRRH ARG HR AR AR AR AR HA ARG A AR UAR U ARG AR UARH ARG HA AU A AR AR HA AR AR HA

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:

The info used from XNAT is series_description

CSV mapping format is good

date 16-06-20-20:12:12

CREATED: New mapping file 06-16-20-20:12:12_tasktype.json is uploaded

84 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

Step 6 Upload Repetition Time Mapping to XNAT

For functional scan, repetition time (TR) CSV mapping is necessary. This is because there could be some error in the
TR found in the NIFTI header or in the JSON sidecar. In order to get the correct TR, we require the user to upload TR
and XNAT scan mapping.

[(dax) $ vim (or nano or any editor you like) repetition_time.csv

series_description,repetition_time_sec
gonogol,0.862
gonogo2,0.862

Step 7 Upload Repetition Time Mapping to XNAT

This step allows the user to upload TR mapping rules to XNAT. TR value is vital during processing. If there is no
repetition time mapping the BIDS conversion will fail for functional scans.

Upload the above Step 6 mapping to XNAT using the BIDSMapping tool

(dax) $ BIDSMapping --project ZALD_TTS --create repetition_time.csv --type repetition_
—time_sec --xnatinfo series_description

HAFRRBHARA AR RRR T ARAHARRR B RREAARB R BRRAARRARARAHBRRRBARARARARBARAS

BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> repetition_time_sec
#

Create mapping with -> repetition_time.csv
i i i i

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:

The info used from XNAT is series_description

CSV mapping format is good

date 16-06-20-20:15:50

CREATED: New mapping file 06-16-20-20:15:50_repetition_time_sec.json is uploaded

2.14. BIDSMapping: Walkthrough Tutorial 85

DAX Documentation, Release 2.11.1-dev0

Step 8 Check Project Level File Manager
Check Manage Files on XNAT project level. There should be two more BIDS Resources created. One for TR mapping
and another for tasktype mapping.

ZALD_TTS

I 1

— (=) 1 Resources

) I NDAR_template O files, O bytes

ID: ZALD_T
Description: Subjects

N () (3 submitted O files, 0 bytes @ o
Institute + (@ (L1 BIDS_xnat_type 1files, 18 bytes @ P
Study, re + (¥ 1 BIDS_datatype 2 files, 478 bytes [;s
PI: Zald, Da — [(1 BIDS_tasktype 2 files, 439 bytes @
Investigators: Landma LOGFILE.txt U U (U) 265 bytes @

06-16-20-20:12:12_tasktype.json U U (U) 174 bytes @
Dell — (@ (1 BIDS_repetition_time_sec 2 files, 156 bytes @

LOGFILE.txt U U (U) 86 bytes @
06-16-20-20:24:23_repetition_time_sec.json U U (U) 70 bytes @

<<first <prev 1 g‘ 3 eload
N

Step 9 Mapping Perfusion Imaging Type

For perfusion imaging, you need to create a mapping for BIDS perfusion type on XNAT. First, create the CSV file of
the mapping that you would like to upload to XNAT.

Open a CSV file

[(dax) $ vim (or nano or any editor you like) asltype.csv J

Type the series_description and asltype you want to map

series_description,asltype
ASL,asl

pCASL,asl

ASL_mO,mO@scan
pCASL_MO,mOscan

ASLtype column correspond to the required BIDS naming structure for perfusion imaging type (https://bids.
neuroimaging.io/). BIDS datatype folder is either - asl (Perfusion imaging scan such as ASL,CASL,pCASL,pASLetc.),
- mOscan (Reference scan for blood flow calculation. If included in asl image, do not map.),

For more information check out https://docs.google.com/document/d/15tnn5F10KpgHypaQINNGiNKsni9035GtDqlzWqkkP6e

Step 10 Upload Perfusion Type to XNAT

This step allows the user to upload asltype mapping rules to XNAT. If there is no asltype mapping the BIDS conversion
will fail for perfusion scans.

Upload the above Step 9 mapping to XNAT using the BIDSMapping tool

(dax) $ BIDSMapping --project ZALD_TTS --create asltype.csv --type asltype --xnatinfo.
—.series_description

86 Chapter 2. Versions and Installation

https://bids.neuroimaging.io/
https://bids.neuroimaging.io/
https://docs.google.com/document/d/15tnn5F10KpgHypaQJNNGiNKsni9035GtDqJzWqkkP6c

DAX Documentation, Release 2.11.1-dev0

HAFRRBHARAH B RRR T ARARARA R RRR AR RARRRRARARAAARARBRRRBARARARARBARAS

BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> EmotionBrain
XNAT mapping type -> series_description
BIDS mapping type -> asltype
#

Create mapping with -> asltype.csv
BRAHRHRAA A A AR ARG AAAARRRRARAAAR AR A A AAARRRRAAAA GGG

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:

The info used from XNAT is series_description

CSV mapping format is good

date 16-06-20-20:15:50

CREATED: New mapping file 06-16-20-20:15:50_asltype.json is uploaded

Step 11 Check Project Level File Manager

Check Manage Files on XNAT project level. There should be one more BIDS Resource created for asltype mapping.

File Manager

B & WResources

Emotion and Your E MBIDS xnat type 1files, 18 bytesU U (U) &

BIDS_datatype 2 files, 453 bytes U U (U) @

) E WBIDS _asitype 2 files, 156 bytes U U (U) @
LOGFILE.txt U U (U,U) 84 bytes @

10-22-21-15:19:28 asltype.json U U (U) 72 bytes &
1D: EmotionB L= o 2

Description: Subprojec

<<first <prev 1 next>

2.14.3 Additional Useful BIDSMapping Tool Options

There are additional options such as —replace and —update

x

» The user can use —replace option to remove existing rules and add new rules. This is useful when the user made
a mistake in creating the rules and the rules need to be deleted and replaced by new ones. Please note, the steps

9-11 can be followed for using the option —replace in the BIDSMapping tool.

* The user can use —update option to add new mapping rules to the existing mapping at the project level. This is
useful when the user added new scans with new scan types to a project and would like to add mapping rules for
these scan types. Please note, the steps 12-14 can be followed for using the option —update in the BIDSMapping

tool.

2.14. BIDSMapping: Walkthrough Tutorial

87

DAX Documentation, Release 2.11.1-dev0

Step 12 Correct Old Mapping

To replace a mapping at project level, create the new CSV mapping. Here, we are replacing repetition_time mapping.

[(dax) $ vim (or nano or any editor you like) correct_repetition_time.csv]

series_description,repetition_time_sec
gonogol, 2
gonogo2, 2

Step 13 Replace Existing Mapping

Use option —replace in the BIDSMapping tool. —replace removes the old mapping rules and adds new ones.

(dax) $ BIDSMapping --project ZALD_TTS --replace correct_repetition_time.csv --type.
—repetition_time_sec --xnatinfo series_description

i

BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> repetition_time_sec
#

Create mapping with -> correct_repetition_time.csv
HARH AR HRHHRH AR RAARH AR RAARA AR RA AR RRARA AR AR RA AR RAARA AR RHAA

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:

The info used from XNAT is series_description

CSV mapping format is good

UPDATED: uploaded mapping file 06-16-20-20:25:47_repetition_time_sec.json

Step 14 Check Corrected LOGFILE

Check the LOGFILE.txt or json mapping at the XNAT project level under the repetition time Resources.

Logfile

06-16-20-20:24:23, + ,gonogol : 0.862
06-16-20-20:24:23, + ,gonogo2 : 0.862
06-16-20-20:25:47, + ,gonogol : 2
06-16-20-20:25:47, + ,gonogo2 : 2
06-16-20-20:25:47, - ,gonogol : 0.862
06-16-20-20:25:47, - ,gonogo2 : 0.862

88 Chapter 2. Versions and Installation

DAX Documentation, Release 2.11.1-dev0

Step 15 Add New Mapping

To update a mapping at project level, create the new CSV mapping. Here, we are updating repetition_time mapping.

[(dax) $ vim (or nano or any editor you like) add_new_repetition_time.csv

series_description,repetition_time_sec
capl,?2
cap2,2
midl,2
mid2,2
mid3, 2

Step 16 Update Existing Mapping

Use option —update in the BIDSMapping tool. —update add the new mapping rules to the existing mapping rules.

(dax) $ BIDSMapping --project ZALD_TTS --update add_new_repetition_time.csv --type.
—repetition_time_sec --xnatinfo series_description

RAR R R AR AARRRARR AR TR RARRARARRR AR RARRRAAARAR AR RRARARRRA RS

BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#! forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> repetition_time_sec
#

Create mapping with -> add_new_repetition_time.csv
HARH AR HRHARH AR RH AR AR RH AR AR ARA AR AR A RA AR AR A RA AR RA AR AR AR A

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:

The info used from XNAT is series_description

CSV mapping format is good

UPDATED: uploaded mapping file 06-23-20-16:36:36_repetition_time_sec. json

Step 17 Check Updated LOGFILE

Check the LOGFILE.txt or json mapping at the XNAT project level under the repetition time Resources.

2.14. BIDSMapping: Walkthrough Tutorial 89

DAX Documentation, Release 2.11.1-dev0

Logfile

06-16-20-20:24:23,
06-16-20-20:24:23,
06-16-20-20:25:47,
06-16-20-20:25:47,
06-16-20-20:25:47,
06-16-20-20:25:47,
06-23-20-16:36:36,
06-23-20-16:36:36,
06-23-20-16:36:36,
06-23-20-16:36:36,
06-23-20-16:36:36,

L+ +++

+ 4+

,gonogol
,gonogo2
,gonogol
,gonogo?2
,gonogol
,gonogo2
,midl
,mid3
,mid2
,capl
,cap2

we e ee se ee

NN NN

0.862
0.862

0.862
0.862

90

Chapter 2. Versions and Installation

d

dax,

dax
dax
dax
dax
dax

8

.bin, 22
.1log, 21
.processors, 20
.task, 8
.XnatUtils, 24

PYTHON MODULE INDEX

91

DAX Documentation, Release 2.11.1-dev0

92

Python Module Index

A

add_fileQ (dax.XnatUtils.SpiderProcessHandler
method), 32

add_folder() (dax.XnatUtils.SpiderProcessHandler
method), 32

add_pdf(Q) (dax.XnatUtils.SpiderProcessHandler
method), 32

add_snapshot () (dax.XnatUtils.SpiderProcessHandler
method), 33

AssessorHandler (class in dax.XnatUtils), 24

assessors() (dax.XnatUtils.CachedImageSession
method), 26

authenticate() (dax.XnatUtils.InterfaceTemp
method), 28

AutoProcessor (class in dax.processors), 20

B

batch_path() (dax.task.ClusterTask method), 8
batch_path(Q) (dax.task.XnatTask method), 18
build () (in module dax.bin), 22

build_cmds () (dax.processors.Processor method), 20
build_commands () (dax.task.ClusterTask method), 8
build_commands () (dax.task.XnatTask method), 18
build_task() (dax.task.ClusterTask method), 9
build_task () (dax.task.XnatTask method), 19

C

CachedImageAssessor (class in dax.XnatUtils), 25
CachedImageScan (class in dax.XnatUtils), 26
CachedImageSession (class in dax.XnatUtils), 26
CachedResource (class in dax.XnatUtils), 28
check_date() (dax.task.ClusterTask method), 9
check_date() (dax.task.Task method), 13
check_default_keys() (in module dax.bin), 22
check_job_usage () (dax.task.ClusterTask method), 9
check_job_usage() (dax.task.Task method), 13
check_job_usage() (dax.task.XnatTask method), 19
check_running () (dax.task.ClusterTask method), 9
check_running () (dax.task.Task method), 13
check_running () (dax.task.XnatTask method), 19
clean() (dax.XnatUtils.SpiderProcessHandler method),
33

INDEX

ClusterTask (class in dax.task), 8

commands) (dax.task.ClusterTask method), 9
commands) (dax.task.Task method), 14

connect() (dax.XnatUtils.InterfaceTemp method), 28

D

dax

module, 8

bin

module, 22

log

module, 21

processors

module, 20

task

module, 8

XnatUtils

module, 24

default_settings_spider()
(dax.processors.Processor method), 20

disconnect() (dax.XnatUtils.InterfaceTemp method),
28

done() (dax.XnatUtils.SpiderProcessHandler method),
33

dax.
dax.
dax.
dax.

dax.

F

file_exists() (dax.XnatUtils.SpiderProcessHandler
method), 33

folder_exists() (dax.XnatUtils.SpiderProcessHandler
method), 33

full_object() (dax.XnatUtils.CachedlmageSession
method), 27

G

get () (dax.XnatUtils.CachedImageAssessor method), 25
get () (dax.XnatUtils.CachedlmageScan method), 26
get) (dax.XnatUtils.CachedlmageSession method), 277
get () (dax.XnatUtils.CachedResource method), 28
get_assessor_input_types()
(dax.processors.AutoProcessor

20

method),

93

DAX Documentation, Release 2.11.1-dev0

get_assessor_input_types()
(dax.processors.Processor method), 21
get_assessor_out_resources()
(dax.XnatUtils.InterfaceTemp method), 28
get_assessor_path() (dax.XnatUtils.InterfaceTemp
method), 29
get_assessor_resource_path()
(dax.XnatUtils.InterfaceTemp method), 29
get_assessors() (dax.XnatUtils.InterfaceTemp
method), 29
get_cmds) (dax.processors.AutoProcessor method), 20
get_createdate() (dax.task.ClusterTask method), 9
get_createdate() (dax.task.Task method), 14
get_experiment_path()
(dax.XnatUtils.InterfaceTemp method), 29

get_in_resources() (dax.XnatUtils.CachedlmageAssessor

method), 25
get_job_status() (dax.task.ClusterTask method), 9
get_job_status() (dax.task.Task method), 14
get_job_status() (dax.task.XnatTask method), 19
get_job_usage() (dax.task.ClusterTask method), 9
get_job_usage() (dax.task.Task method), 14
get_jobid () (dax.task.ClusterTask method), 10
get_jobid() (dax.task.Task method), 14
get_jobnode () (dax.task.ClusterTask method), 10
get_jobnode () (dax.task.Task method), 14
get_jobstartdate() (dax.task.ClusterTask method),
10
get_jobstartdate() (dax.task.Task method), 14
get_memused() (dax.task.ClusterTask method), 10
get_memused() (dax.task.Task method), 14
get_out_resources()
(dax.XnatUtils.CachedlmageAssessor method),

25
get_processor_name () (dax.task.ClusterTask
method), 10

get_processor_name () (dax.task.Task method), 15

get_processor_version() (dax.task.ClusterTask
method), 10

get_processor_version() (dax.task.Task method), 15

get_proctype() (dax.processors.AutoProcessor

method), 20

get_proctype() (dax.processors.Processor method),
21

get_proctype() (dax.XnatUtils.AssessorHandler
method), 24

get_project_assessors()
(dax.XnatUtils.InterfaceTemp method), 29
get_project_id(Q) (dax.XnatUtils.AssessorHandler

method), 24

get_project_path() (dax.XnatUtils.InterfaceTemp
method), 29

get_project_scans() (dax.XnatUtils.InterfaceTemp
method), 29

get_qcstatus() (dax.task.ClusterTask method), 10
get_qcstatus() (dax.task.Task method), 15
get_resources() (dax.XnatUtils. CachedlmageAssessor

method), 25

get_resources() (dax.XnatUtils.CachedlmageScan
method), 26

get_resources() (dax.XnatUtils.CachedlmageSession
method), 27

get_resources() (dax.XnatUtils.InterfaceTemp
method), 30

get_scan_idQ) (dax.XnatUtils.AssessorHandler
method), 24

get_scan_path(Q (dax.XnatUtils.InterfaceTemp
method), 30

get_scan_resource_path()
(dax.XnatUtils.InterfaceTemp method), 30
get_scan_resources() (dax.XnatUtils.InterfaceTemp
method), 30
get_scans () (dax.XnatUtils.InterfaceTemp method), 30
get_session_label ()
(dax.XnatUtils.AssessorHandler
24
get_session_resources()
(dax.XnatUtils.InterfaceTemp method), 30
get_sessions() (dax.XnatUtils.InterfaceTemp
method), 30
get_sessions_minimal ()
(dax.XnatUtils.InterfaceTemp method), 31
get_sgp_assessor_path()
(dax.XnatUtils.InterfaceTemp method), 31
get_status() (dax.task.ClusterTask method), 10
get_status() (dax.task.Task method), 15
get_statuses() (dax.task.ClusterTask method), 10
get_statuses() (dax.task.Task method), 15
get_subject_label ()

method),

(dax.XnatUtils.AssessorHandler method),
24

get_subject_path() (dax.XnatUtils.InterfaceTemp
method), 31

get_subject_resources()
(dax.XnatUtils.InterfaceTemp method), 31

get_subjects() (dax.XnatUtils.InterfaceTemp
method), 31

get_walltime() (dax.task.ClusterTask method), 10

get_walltime () (dax.task.Task method), 15

H

has_shared_project()
(dax.XnatUtils.CachedlmageSession method),
27

in_resources() (dax.XnatUtils.CachedlmageAssessor
method), 25

94

Index

DAX Documentation, Release 2.11.1-dev0

info() (dax.XnatUtils.CachedlmageAssessor method),
25

info() (dax.XnatUtils.CachedlmageScan method), 26

info () (dax.XnatUtils.CachedlmageSession method), 27

info () (dax.XnatUtils.CachedResource method), 28

InterfaceTemp (class in dax.XnatUtils), 28

is_open() (dax.task.ClusterTask method), 11

is_open() (dax.task.Task method), 15

is_valid() (dax.XnatUtils.AssessorHandler method),
24

L

label) (dax.XnatUtils.CachedlmageAssessor method),
25

label O (dax.XnatUtils.CachedImageScan method), 26

label () (dax.XnatUtils.CachedlmageSession method),
27

label) (dax.XnatUtils.CachedResource method), 28

launch () (dax.task.ClusterTask method), 11

launch Q) (dax.task.Task method), 15

launch () (dax.task.XnatTask method), 19

launch_jobs () (in module dax.bin), 22

list_project_assessor_types()
(dax.XnatUtils.InterfaceTemp method), 31

list_project_assessors()
(dax.XnatUtils.InterfaceTemp method), 31

load_from_file() (in module dax.bin), 23

M

module
dax, 8
dax.bin, 22
dax.log, 21
dax.processors, 20
dax.task, 8
dax.XnatUtils, 24

O

out_resources() (dax.XnatUtils. CachedlmageAssessor
method), 25

outlog_path(Q) (dax.task.ClusterTask method), 11

outlog_path() (dax.task.Task method), 16

outlog_path() (dax.task.XnatTask method), 19

P

parent () (dax.XnatUtils. CachedImageAssessor
method), 26

parent () (dax.XnatUtils.CachedlmageScan method), 26

parent () (dax.XnatUtils.CachedResource method), 28

parse_session() (dax.processors.AutoProcessor
method), 20

pbs_path() (dax.task.Task method), 16

print_copying_statement()
(dax.XnatUtils.SpiderProcessHandler method),

33

print_err() (dax.XnatUtils.SpiderProcessHandler
method), 34

print_msg(Q) (dax.XnatUtils.SpiderProcessHandler
method), 34

Processor (class in dax.processors), 20

processor_spec_path() (dax.task.ClusterTask
method), 11

processor_spec_path() (dax.task.XnatTask method),
19

R

raise_yaml_error_if_no_key() (in module dax.bin),
23

read_yaml_settings() (in module dax.bin), 23

ready_flag_exists() (dax.task.Task method), 16

reproc_processing() (dax.task.ClusterTask method),
11

reproc_processing() (dax.task.Task method), 16

resources() (dax.XnatUtils.CachedlmageScan
method), 26

resources() (dax.XnatUtils.CachedlmageSession
method), 27

S

scans() (dax.XnatUtils.CachedlmageSession method),

27

select_assessor() (dax.XnatUtils.AssessorHandler
method), 24

select_assessor() (dax.XnatUtils.InterfaceTemp
method), 31

select_assessor_resource()
(dax.XnatUtils.InterfaceTemp method), 31
select_experiment() (dax.XnatUtils.InterfaceTlemp

method), 32

select_project() (dax.XnatUtils.InterfaceTemp
method), 32

select_scan() (dax.XnatUtils.InterfaceTemp method),
32

select_scan_resource()
(dax.XnatUtils.InterfaceTemp method), 32

select_session() (dax.XnatUtils.InterfaceTemp
method), 32

select_sgp_assessor()
(dax.XnatUtils.InterfaceTemp method), 32

select_subject() (dax.XnatUtils.InterfaceTemp
method), 32

session() (dax.XnatUtils.CachedlmageScan method),
26

session() (dax.XnatUtils.CachedlmageSession
method), 27

Index

95

DAX Documentation, Release 2.11.1-dev0

set_assessor_status() update_status() (dax.task.XnatTask method), 20
(dax.XnatUtils.SpiderProcessHandler method), update_tasks() (in module dax.bin), 23
34 upload_outlog_dir() (dax.task.ClusterTask method),
set_createdate() (dax.task.ClusterTask method), 11 13
set_createdate() (dax.task.Task method), 16 upload_pbs_dir () (dax.task.ClusterTask method), 13
set_createdate_today() (dax.task.ClusterTask
method), 11 X

set_createdate_today () (dax.task.Task method), 16 XnatTask (class in dax.task), 18

set_error() (dax.XnatUtils.SpiderProcessHandler
method), 34

set_jobid () (dax.task.ClusterTask method), 11

set_jobid () (dax.task.Task method), 16

set_jobnode () (dax.task.ClusterTask method), 11

set_jobnode () (dax.task.Task method), 17

set_jobstartdate() (dax.task.ClusterTask method),
12

set_jobstartdate() (dax.task.Task method), 17

set_jobstartdate_today() (dax.task.Task method),
17

set_launch() (dax.task.ClusterTask method), 12

set_launch() (dax.task.Task method), 17

set_launch() (dax.task.XnatTask method), 19

set_logger () (in module dax.bin), 23

set_memused() (dax.task.ClusterTask method), 12

set_memused() (dax.task.Task method), 17

set_proc_and_gc_status() (dax.task.ClusterTask

method), 12
set_proc_and_qc_status() (dax.task.Task method),
17

set_qcstatus () (dax.task.ClusterTask method), 12
set_qcstatus() (dax.task.Task method), 18
set_spider_settings() (dax.processors.Processor
method), 21
set_status() (dax.task.ClusterTask method), 12
set_status() (dax.task.Task method), 18
set_walltime() (dax.task.ClusterTask method), 12
set_walltime () (dax.task.Task method), 18
setup_critical_logger () (in module dax.log), 21
setup_debug_logger () (in module dax.log), 21
setup_error_logger () (in module dax.log), 21
setup_info_logger () (in module dax.log), 22
setup_warning_logger () (in module dax.log), 22
should_run() (dax.processors.Processor method), 21
SpiderProcessHandler (class in dax.XnatUtils), 32

T

Task (class in dax.task), 13

U

undo_processing() (dax.task.ClusterTask method), 13
undo_processing() (dax.task.Task method), 18
undo_processing() (in module dax.bin), 23
update_status() (dax.task.ClusterTask method), 13
update_status() (dax.task.Task method), 18

96 Index

	Quick Install
	Versions and Installation
	Installing DAX in a Virtual Environment
	Table of Contents
	Setup
	Create the Virtual Environment
	Install DAX
	Verify Installation

	Installation of fs:fsData and proc:genProcData
	On XNAT VM:
	ON XNAT webapp:

	Source Documentation
	dax – Root package
	dax.task – Task class
	dax.spiders – Spider class
	dax.processors – Processor class
	dax.log – Logging utility
	dax.bin – Responsible for launching, building and updating a Task
	dax.XnatUtils – Collection of utilities for upload/download and general access

	DAX Manager
	Table of Contents:
	About
	How to set it up

	DAX 1
	How to add a Module in DAX 1
	How to add a Process in DAX 1

	LDAX
	How to add a Module in LDAX
	How to add a Process in LDAX

	Contributors
	How To Contribute
	FAQ
	DAX Processors
	About
	Processor Repos
	Overview
	A “Simple” Example
	Parts of the Processor YAML
	inputs
	xnat scans
	xnat assessors
	xnat attrs
	xnat filters
	outputs
	command
	attrs
	jobtemplate

	Versioning
	Notes on Singularity run options

	DAX Processors, version 3
	About
	Processor Repos
	Overview
	A Basic Example
	Parts of the Processor YAML
	inputs (required)
	xnat scans
	xnat assessors
	xnat attrs
	xnat filters
	outputs
	command
	jobtemplate

	Versioning
	Notes on singularity options
	Subject-Level Processors

	Assessors in VUIIS XNAT
	DAX Command Line Tools
	Table of Contents
	List of the Tools
	XnatSetup
	XnatQuery
	XnatCheck
	XnatDownload
	XnatUpload
	XnatReport
	XnatSwitchProcessStatus
	XnatProcessUpload
	XnatSubjectUpdate
	RedCapReport
	XnatCheckLogin
	Xnatinfo
	Xnatsessionupdate
	BIDSMapping
	XnatBOND

	DAX Executables
	Table of Contents
	DAX Packages

	How Does it Work?
	DAX Settings
	How to Write a ProjectSettings.yaml File
	DAX Executables

	DAX Build
	DAX Update
	DAX Launch
	DAX Upload
	DAX Manager

	Manage a Project
	Table of Contents
	Check Why an Assessor Failed
	Set/Reset Assessors to Run
	Run an XnatCheck on Your Project
	Run dax_update Manually on a Project (Advanced Users)
	Run dax_launch Manually on a Project (Advanced Users)
	Common and Spurious Errors You May Encounter

	Unable to Read Experiments for Project: XXXXXXXX
	Restarting a Job
	Project Settings Files
	Adding Directories Caused by OSError (only relevant to LDAX)
	Settings Directory is Missing from tmp Folder (only relevant to LDAX)
	Verifying the Spider is Waiting to get Uploaded to XNAT

	BIDSMapping: Walkthrough Tutorial
	Introduction
	Table of Contents
	Step 1 Mapping Datatype and Scans
	Step 2 Upload Datatype Mapping to XNAT
	Step 3 Check Project Level File Manager
	Steps 4 through 8 are ONLY FOR FUNCTIONAL SCANS
	Step 4 Mapping Tasktype and Scans

	Step 5 Upload Tasktype Mapping to XNAT
	Step 6 Upload Repetition Time Mapping to XNAT
	Step 7 Upload Repetition Time Mapping to XNAT
	Step 8 Check Project Level File Manager
	Step 9 Mapping Perfusion Imaging Type
	Step 10 Upload Perfusion Type to XNAT
	Step 11 Check Project Level File Manager

	Additional Useful BIDSMapping Tool Options
	Step 12 Correct Old Mapping
	Step 13 Replace Existing Mapping
	Step 14 Check Corrected LOGFILE
	Step 15 Add New Mapping
	Step 16 Update Existing Mapping
	Step 17 Check Updated LOGFILE

	Python Module Index
	Index

