

Welcome to DAX’s documentation!

DAX is Distributed Automation for XNAT [http://xnat.org/]

DAX allows you to:

	store analyzed imaging data on XNAT (datatypes)

	extract information from XNAT via scripts (Xnat_tools)

	run pipelines on your data in XNAT via a cluster (processors)

Quick Install

Create a python3 virtual environment [https://docs.python.org/3/library/venv.html] with dax and all dependencies.

python3 -m venv daxvenv
source daxvenv/bin/activate
pip install dax

Configure an environment variable named XNAT_HOST set to the full url of your xnat server. This can
be incuded in your .bashrc/.bash_profile file.

export XNAT_HOST=https://central.xnat.org

Configure your credentials in a file named “.netrc” in your home directory.

machine <SERVER>
login <USER>
password <PASSWORD>

Here SERVER is the server name only. For example, central.xnat.org, not https://xnat.website.com/xnat.

Versions and Installation

Our currently running versions of dax are:

	Dax 2 - 2.2.1 - As of July 8, 2021

	Used for most purposes

	LDAX latest - 0.7.10 - As of October 7, 2020

	Legacy Dax - Please use DAX 2

These can be verified with

dax version
or
pip freeze | grep dax
or
python3 -m pip freeze | grep dax

To install please reference our Install Page [https://dax.readthedocs.io/en/latest/installing_dax_in_a_virtual_environment.html]

Contents:

	Installing DAX in a Virtual Environment
	Table of Contents
	Setup

	Create the Virtual Environment

	Install DAX

	Verify Installation

	Installation of fs:fsData and proc:genProcData
	On XNAT VM:

	ON XNAT webapp:

	Source Documentation
	dax – Root package

	dax.task – Task class
	ClusterTask

	Task

	XnatTask

	dax.spiders – Spider class

	dax.processors – Processor class
	AutoProcessor

	Processor

	dax.log – Logging utility
	setup_critical_logger()

	setup_debug_logger()

	setup_error_logger()

	setup_info_logger()

	setup_warning_logger()

	dax.bin – Responsible for launching, building and updating a Task
	build()

	check_default_keys()

	launch_jobs()

	load_from_file()

	raise_yaml_error_if_no_key()

	read_yaml_settings()

	set_logger()

	undo_processing()

	update_tasks()

	dax.XnatUtils – Collection of utilities for upload/download and general access
	AssessorHandler

	CachedImageAssessor

	CachedImageScan

	CachedImageSession

	CachedResource

	InterfaceTemp

	SpiderProcessHandler

	DAX Manager
	Table of Contents:
	About

	How to set it up

	DAX 1
	How to add a Module in DAX 1

	How to add a Process in DAX 1

	LDAX
	How to add a Module in LDAX

	How to add a Process in LDAX

	Contributors

	How To Contribute

	FAQ

	DAX Processors
	About

	Processor Repos

	Overview

	A “Simple” Example

	Parts of the Processor YAML

	inputs
	xnat scans

	xnat assessors

	xnat attrs

	xnat filters

	outputs

	command

	attrs

	jobtemplate

	Versioning

	Notes on Singularity run options

	DAX Processors, version 3
	About

	Processor Repos

	Overview

	A Basic Example

	Parts of the Processor YAML

	inputs (required)
	xnat scans

	xnat assessors

	xnat attrs

	xnat filters

	outputs

	command

	jobtemplate

	Versioning

	Notes on singularity options

	Subject-Level Processors

	Assessors in VUIIS XNAT

	DAX Command Line Tools
	Table of Contents

	List of the Tools
	XnatSetup

	XnatQuery

	XnatCheck

	XnatDownload

	XnatUpload

	XnatReport

	XnatSwitchProcessStatus

	XnatProcessUpload

	XnatSubjectUpdate

	RedCapReport

	XnatCheckLogin

	Xnatinfo

	Xnatsessionupdate

	BIDSMapping

	XnatBOND

	DAX Executables
	Table of Contents
	DAX Packages

	How Does it Work?

	DAX Settings

	How to Write a ProjectSettings.yaml File
	DAX Executables

	DAX Build

	DAX Update

	DAX Launch

	DAX Upload

	DAX Manager

	Manage a Project
	Table of Contents
	Check Why an Assessor Failed

	Set/Reset Assessors to Run

	Run an XnatCheck on Your Project

	Run dax_update Manually on a Project (Advanced Users)

	Run dax_launch Manually on a Project (Advanced Users)

	Common and Spurious Errors You May Encounter

	Unable to Read Experiments for Project: XXXXXXXX

	Restarting a Job

	Project Settings Files

	Adding Directories Caused by OSError (only relevant to LDAX)

	Settings Directory is Missing from tmp Folder (only relevant to LDAX)

	Verifying the Spider is Waiting to get Uploaded to XNAT

	BIDSMapping: Walkthrough Tutorial
	Introduction

	Table of Contents
	Step 1 Mapping Datatype and Scans

	Step 2 Upload Datatype Mapping to XNAT

	Step 3 Check Project Level File Manager

	Step 5 Upload Tasktype Mapping to XNAT

	Step 6 Upload Repetition Time Mapping to XNAT

	Step 7 Upload Repetition Time Mapping to XNAT

	Step 8 Check Project Level File Manager

	Step 9 Mapping Perfusion Imaging Type

	Step 10 Upload Perfusion Type to XNAT

	Step 11 Check Project Level File Manager

	Additional Useful BIDSMapping Tool Options
	Step 12 Correct Old Mapping

	Step 13 Replace Existing Mapping

	Step 14 Check Corrected LOGFILE

	Step 15 Add New Mapping

	Step 16 Update Existing Mapping

	Step 17 Check Updated LOGFILE

Installing DAX in a Virtual Environment

Table of Contents

	Setup

	Create the Virtual Environment

	Install DAX

	Verify Installation

Setup

To install miniconda3 go to https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html . Follow the procedure described on the miniconda site to install for your OS. It is very important that you follow the directions closely and not forget to source conda. The main idea is to download the Python 3.7 or newer bash file and open the terminal (using 3.8 and MacOS as an example here). Run the following where the file was downloaded:

bash Miniconda3-latest-MacOSX-x86_64.sh

Follow the prompts until miniconda is installed. Now, source conda and add the path to .bash_profile. Then close and reopen terminal. To display a list of installed packages:

conda list

Create the Virtual Environment

DAX is to be installed only on virtual environments on Python 3. To create a new environment in Miniconda with Python 3.8:

conda create -n daxvenv python=3.8

which can then be activated or deactivated with:

conda activate daxvenv # Activation of environment
conda deactivate # Deactivation of environment

After activating the new environment, git version 2.11+ should be installed.

	For ACCRE users, refer to the instructions here: https://dax.readthedocs.io/en/latest/requirements_for_dax_on_accre.html

	Otherwise, install git using these instructions: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Install DAX

Once the virtual environment with Python 3 is created and the correct version of git is installed, you’ll need to install dax itself

(daxvenv) $ pip install dax

Configure an environment variable named XNAT_HOST set to the full url of your xnat server. This can
be incuded in your startup file (such as .bashrc or .bash_profile).

(daxvenv) $ export XNAT_HOST=https://central.xnat.org

Configure your credentials in a file named “.netrc” in your home directory.

machine <SERVER>
login <USER>
password <PASSWORD>

Here SERVER is the server name only. For example, central.xnat.org, not https://xnat.website.com/xnat.
Make sure that the xnat_host is formatted similarly to ‘xnat.website.com’ NOT ‘https://xnat.website.com/xnat’
The full url WILL NOT WORK properly.

Verify Installation

Next, run XnatCheckLogin, which will verify that you can log on successfully.

(daxvenv) $ XnatCheckLogin
==
Checking your settings for XNAT
No host specified, using XNAT_HOST environment variable.
Checking login for host=https://central.xnat.org
Checking connection:host=https://central.xnat.org, user=someusername
--> Good login.
==

Installation of fs:fsData and proc:genProcData

Prerequisites:

	install an XNAT instance
https://wiki.xnat.org/documentation/getting-started-with-xnat

On XNAT VM:

	Make a BACKUP of your $XNAT_HOME, postgres db, and tomcat deployment

	Stop tomcat

	Copy plugins to XNAT

Copy the files dax-plugin-fsData-X.Y.Z.jar and dax-plugin-genProcData-X.Y.Z.jar to ${XNAT_HOME}/plugins

The plugins folder is located in the dax package at the path
dax/misc/xnat-plugins/files. You can download the files from github
repository: https://github.com/VUIIS/dax .

	Start tomcat and confirm that plugins are installed

ON XNAT webapp:

	Log onto XNAT as admin

	click Administer > Data types

	click Setup Additional Data Type

	for fs:fsData (NOTE: the fs:fsData datatype is deprecated. Install only if the need is known to exist)

4.a) select fs:fsData and valid without adding anything at first.

4.b) Come back to the new types and edit the fields:

enter "FreeSurfer" in both Singular Name and Plural Name field
enter "FS" in Code field

4.c) Edit the “Available Report Actions” by adding delete if you want to
be able to delete assessor with the following values:

Remove Name: delete
Display Name: Delete
Grouping:
Image: delete.gif
Popup:
Secure Access: delete
Feature:
Additional Parameters:
Sequence: 4

4.d) click submit and then accept defaults for subsequent screens

	for proc:genProcData

5.a) select proc:genProcData and valid without adding anything at first.

5.b) Come back to the new types and edit the fields:

enter "Processing" in both Singular Name and Plural Name field
enter "Proc" in Code field

5.c) Edit the “Available Report Actions” by adding delete if you want to
be able to delete assessor with the following values:

Remove Name: delete
Display Name: Delete
Grouping:
Image: delete.gif
Popup:
Secure Access: delete
Feature:
Additional Parameters:
Sequence: 4

5.d) click submit and then accept defaults for subsequent screens

You are now ready to use the two assessor types fs:fsData and
proc:genProcData

Source Documentation

dax – Root package

dax.task – Task class

Task object to generate / manage assessors and cluster.

	
class dax.task.ClusterTask(assr_label, upload_dir, diskq)

	Class Task to generate/manage the assessor with the cluster

	
batch_path()

	Method to return the path of the PBS file for the job

	Returns:

	A string that is the absolute path to the PBS file that will
be submitted to the scheduler for execution.

	
build_commands()

	Call the get_cmds method of the class Processor.

	Parameters:

	jobdir – Fully qualified path where the job will run on the node.
Note that this is likely to start with /tmp on most grids.

	Returns:

	A string that makes a command line call to a spider with all
args.

	
build_task()

	Method to build a job

	
check_date()

	Sets the job created date if the assessor was not made via dax_build

	
check_job_usage()

	
	The task has now finished, get the amount of memory used, the amount of
	walltime used, the jobid of the process, the node the process ran on,
and when it started from the scheduler. Set these values locally

	Returns:

	None

	
check_running()

	Check to see if a job specified by the scheduler ID is still running

	Parameters:

	jobid – The ID of the job in question assigned by the scheduler.

	Returns:

	A String of JOB_RUNNING if the job is running or enqueued and
JOB_FAILED if the ready flag (see read_flag_exists) does not exist
in the assessor label folder in the upload directory.

	
commands(jobdir)

	Call the get_cmds method of the class Processor.

	Parameters:

	jobdir – Fully qualified path where the job will run on the node.
Note that this is likely to start with /tmp on most grids.

	Returns:

	A string that makes a command line call to a spider with all
args.

	
get_createdate()

	Get the date an assessor was created

	Returns:

	String of the date the assessor was created in “%Y-%m-%d”
format

	
get_job_status()

	Get the status of a job given its jobid as assigned by the scheduler

	Parameters:

	jobid – job id assigned by the scheduler

	Returns:

	string from call to cluster.job_status or UNKNOWN.

	
get_job_usage()

	
	Get the amount of memory used, the amount of walltime used, the jobid
	of the process, the node the process ran on, and when it started
from the scheduler.

	Returns:

	List of strings. Memory used, walltime used, jobid, node used,
and start date

	
get_jobid()

	Get the jobid of an assessor as stored in local cache

	Returns:

	string of the jobid

	
get_jobnode()

	Gets the node that a process ran on

	Returns:

	String identifying the node that a job ran on

	
get_jobstartdate()

	Get the date that the job started

	Returns:

	String of the date that the job started in “%Y-%m-%d” format

	
get_memused()

	Get the amount of memory used for a process

	Returns:

	String of how much memory was used

	
get_processor_name()

	Get the name of the Processor for the Task.

	Returns:

	String of the Processor name.

	
get_processor_version()

	Get the version of the Processor.

	Returns:

	String of the Processor version.

	
get_qcstatus()

	Get the qcstatus

	
get_status()

	Get the procstatus

	Returns:

	The string of the procstatus

	
get_statuses()

	Get the procstatus, qcstatus, and job id of an assessor

	
get_walltime()

	Get the amount of walltime used for a process

	Returns:

	String of how much walltime was used for a process

	
is_open()

	
	Check to see if a task is still in “Open” status as defined in
	OPEN_STATUS_LIST.

	Returns:

	True if the Task is open. False if it is not open

	
launch(force_no_qsub=False)

	Method to launch a job on the grid

	Raises:

	cluster.ClusterLaunchException if the jobid is 0 or empty
as returned by pbs.submit() method

	Returns:

	True if the job failed

	
outlog_path()

	Method to return the path of outlog file for the job

	Returns:

	A string that is the absolute path to the OUTLOG file.

	
processor_spec_path()

	Method to return the path of processor file for the job

	Returns:

	A string that is the absolute path to the file.

	
reproc_processing()

	
	Raises:

	NotImplementedError

	Returns:

	None

	
set_createdate(date_str)

	Set the date of the assessor creation to user passed value

	Parameters:

	date_str – String of the date in “%Y-%m-%d” format

	Returns:

	String of today’s date in “%Y-%m-%d” format

	
set_createdate_today()

	Set the date of the assessor creation to today

	Returns:

	String of todays date in “%Y-%m-%d” format

	
set_jobid(jobid)

	Set the job ID of the assessor

	Parameters:

	jobid – The ID of the process assigned by the grid scheduler

	Returns:

	None

	
set_jobnode(jobnode)

	Set the value of the the node that the process ran on on the grid

	Parameters:

	jobnode – String identifying the node the job ran on

	Returns:

	None

	
set_jobstartdate(date_str)

	
	Set the date that the job started on the grid based on user passed
	value

	Parameters:

	date_str – Datestring in the format “%Y-%m-%d” to set the job
starte date to

	Returns:

	None

	
set_launch(jobid)

	Set the date that the job started and its associated ID.
Additionally, set the procstatus to JOB_RUNNING

	Parameters:

	jobid – The ID of the process assigned by the grid scheduler

	Returns:

	None

	
set_memused(memused)

	Set the amount of memory used for a process

	Parameters:

	memused – String denoting the amount of memory used

	Returns:

	None

	
set_proc_and_qc_status(procstatus, qcstatus)

	Set the procstatus and qcstatus of the assessor

	
set_qcstatus(qcstatus)

	Set the qcstatus of the assessor

	Parameters:

	qcstatus – String to set the qcstatus to

	Returns:

	None

	
set_status(status)

	Set the procstatus of an assessor on XNAT

	Parameters:

	status – String to set the procstatus of the assessor to

	Returns:

	None

	
set_walltime(walltime)

	Set the value of walltime used for an assessor

	Parameters:

	walltime – String denoting how much time was used running
the process.

	Returns:

	None

	
undo_processing()

	
	Unset the job ID, memory used, walltime, and jobnode information
	for the assessor on XNAT

	Except:

	pyxnat.core.errors.DatabaseError when attempting to
delete a resource

	Returns:

	None

	
update_status()

	Update the status of a Cluster Task object.

	Returns:

	the “new” status (updated) of the Task.

	
upload_outlog_dir()

	Method to return the path of outlog file for the job

	Returns:

	A string that is the absolute path to the OUTLOG file.

	
upload_pbs_dir()

	Method to return the path of dir for the PBS

	Returns:

	A string that is the directory path for the PBS dir

	
class dax.task.Task(processor, assessor, upload_dir)

	Class Task to generate/manage the assessor with the cluster

	
check_date()

	
	Sets the job created date if the assessor was not made through
	dax_build

	Returns:

	Returns if get_createdate() is != ‘’, sets date otherwise

	
check_job_usage()

	
	The task has now finished, get the amount of memory used, the amount of
	walltime used, the jobid of the process, the node the process ran on,
and when it started from the scheduler. Set these values on XNAT

	Returns:

	None

	
check_running(jobid=None)

	Check to see if a job specified by the scheduler ID is still running

	Parameters:

	jobid – The ID of the job in question assigned by the scheduler.

	Returns:

	A String of JOB_RUNNING if the job is running or enqueued and
JOB_FAILED if the ready flag (see read_flag_exists) does not exist
in the assessor label folder in the upload directory.

	
commands(jobdir)

	Call the get_cmds method of the class Processor.

	Parameters:

	jobdir – Fully qualified path where the job will run on the node.
Note that this is likely to start with /tmp on most grids.

	Returns:

	A string that makes a command line call to a spider with all
args.

	
get_createdate()

	Get the date an assessor was created

	Returns:

	String of the date the assessor was created in “%Y-%m-%d”
format

	
get_job_status(jobid=None)

	Get the status of a job given its jobid as assigned by the scheduler

	Parameters:

	jobid – job id assigned by the scheduler

	Returns:

	string from call to cluster.job_status or UNKNOWN.

	
get_job_usage()

	
	Get the amount of memory used, the amount of walltime used, the jobid
	of the process, the node the process ran on, and when it started
from the scheduler.

	Returns:

	List of strings. Memory used, walltime used, jobid, node used,
and start date

	
get_jobid()

	Get the jobid of an assessor as stored on XNAT

	Returns:

	string of the jobid

	
get_jobnode()

	Gets the node that a process ran on

	Returns:

	String identifying the node that a job ran on

	
get_jobstartdate()

	Get the date that the job started

	Returns:

	String of the date that the job started in “%Y-%m-%d” format

	
get_memused()

	Get the amount of memory used for a process

	Returns:

	String of how much memory was used

	
get_processor_name()

	Get the name of the Processor for the Task.

	Returns:

	String of the Processor name.

	
get_processor_version()

	Get the version of the Processor.

	Returns:

	String of the Processor version.

	
get_qcstatus()

	Get the qcstatus of the assessor

	Returns:

	A string of the qcstatus for the assessor if it exists.
If it does not, it returns DOES_NOT_EXIST.
The else case returns an UNKNOWN xsiType with the xsiType of the
assessor as stored on XNAT.

	
get_status()

	Get the procstatus of an assessor

	Returns:

	The string of the procstatus of the assessor.
DOES_NOT_EXIST if the assessor does not exist

	
get_statuses(cached_sessions=None)

	Get the procstatus, qcstatus, and job id of an assessor

	Returns:

	Serially ordered strings of the assessor procstatus,
qcstatus, then jobid.

	
get_walltime()

	Get the amount of walltime used for a process

	Returns:

	String of how much walltime was used for a process

	
is_open()

	
	Check to see if a task is still in “Open” status as defined in
	OPEN_STATUS_LIST.

	Returns:

	True if the Task is open. False if it is not open

	
launch(jobdir, job_email=None, job_email_options='FAIL', job_rungroup=None, xnat_host=None, writeonly=False, pbsdir=None, force_no_qsub=False)

	Method to launch a job on the grid

	Parameters:

	
	jobdir – absolute path where the data will be stored on the node

	job_email – who to email if the job fails

	job_email_options – grid-specific job email options (e.g.,
fails, starts, exits etc)

	job_rungroup – grid-specific group to run the job under

	xnat_host – set the XNAT_HOST in the PBS job

	writeonly – write the job files without submitting them

	pbsdir – folder to store the pbs file

	force_no_qsub – run the job locally on the computer (serial mode)

	Raises:

	cluster.ClusterLaunchException if the jobid is 0 or empty
as returned by pbs.submit() method

	Returns:

	True if the job failed

	
outlog_path()

	Method to return the path of outlog file for the job

	Returns:

	A string that is the absolute path to the OUTLOG file.

	
pbs_path(writeonly=False, pbsdir=None)

	Method to return the path of the PBS file for the job

	Parameters:

	
	writeonly – write the job files without submitting them in TRASH

	pbsdir – folder to store the pbs file

	Returns:

	A string that is the absolute path to the PBS file that will
be submitted to the scheduler for execution.

	
ready_flag_exists()

	Method to see if the flag file
<UPLOAD_DIR>/<ASSESSOR_LABEL>/READY_TO_UPLOAD.txt exists

	Returns:

	True if the file exists. False if the file does not exist.

	
reproc_processing()

	If the procstatus of an assessor is REPROC on XNAT, rerun the assessor.

	Returns:

	None

	
set_createdate(date_str)

	Set the date of the assessor creation to user passed value

	Parameters:

	date_str – String of the date in “%Y-%m-%d” format

	Returns:

	String of today’s date in “%Y-%m-%d” format

	
set_createdate_today()

	Set the date of the assessor creation to today

	Returns:

	String of todays date in “%Y-%m-%d” format

	
set_jobid(jobid)

	Set the job ID of the assessor on XNAT

	Parameters:

	jobid – The ID of the process assigned by the grid scheduler

	Returns:

	None

	
set_jobnode(jobnode)

	Set the value of the the node that the process ran on on the grid

	Parameters:

	jobnode – String identifying the node the job ran on

	Returns:

	None

	
set_jobstartdate(date_str)

	
	Set the date that the job started on the grid based on user passed
	value

	Parameters:

	date_str – Datestring in the format “%Y-%m-%d” to set the job
starte date to

	Returns:

	None

	
set_jobstartdate_today()

	Set the date that the job started on the grid to today

	Returns:

	call to set_jobstartdate with today’s date

	
set_launch(jobid)

	Set the date that the job started and its associated ID on XNAT.
Additionally, set the procstatus to JOB_RUNNING

	Parameters:

	jobid – The ID of the process assigned by the grid scheduler

	Returns:

	None

	
set_memused(memused)

	Set the amount of memory used for a process

	Parameters:

	memused – String denoting the amount of memory used

	Returns:

	None

	
set_proc_and_qc_status(procstatus, qcstatus)

	Set the procstatus and qcstatus of the assessor

	Parameters:

	
	procstatus – String to set the procstatus of the assessor to

	qcstatus – String to set the qcstatus of the assessor to

	Returns:

	None

	
set_qcstatus(qcstatus)

	Set the qcstatus of the assessor

	Parameters:

	qcstatus – String to set the qcstatus to

	Returns:

	None

	
set_status(status)

	Set the procstatus of an assessor on XNAT

	Parameters:

	status – String to set the procstatus of the assessor to

	Returns:

	None

	
set_walltime(walltime)

	Set the value of walltime used for an assessor on XNAT

	Parameters:

	walltime – String denoting how much time was used running
the process.

	Returns:

	None

	
undo_processing()

	
	Unset the job ID, memory used, walltime, and jobnode information
	for the assessor on XNAT

	Except:

	pyxnat.core.errors.DatabaseError when attempting to
delete a resource

	Returns:

	None

	
update_status()

	Update the satus of a Task object.

	Returns:

	the “new” status (updated) of the Task.

	
class dax.task.XnatTask(processor, assessor, upload_dir, diskq)

	Class Task to generate/manage the assessor with the cluster

	
batch_path()

	Method to return the path of the PBS file for the job

	Returns:

	A string that is the absolute path to the PBS file that will
be submitted to the scheduler for execution.

	
build_commands(assr, sessions, jobdir, resdir)

	Call the build_cmds method of the class Processor.

	Parameters:

	jobdir – Fully qualified path where the job will run on the node.
Note that this is likely to start with /tmp on most grids.

	Returns:

	A string that makes a command line call to a spider with all
args.

	
build_task(assr, sessions, jobdir, job_email=None, job_email_options='FAIL', job_rungroup=None, xnat_host=None)

	Method to build a job

	
check_job_usage()

	
	The task has now finished, get the amount of memory used, the amount of
	walltime used, the jobid of the process, the node the process ran on,
and when it started from the scheduler. Set these values on XNAT

	Returns:

	None

	
check_running()

	Check to see if a job specified by the scheduler ID is still running

	Parameters:

	jobid – The ID of the job in question assigned by the scheduler.

	Returns:

	A String of JOB_RUNNING if the job is running or enqueued and
JOB_FAILED if the ready flag (see read_flag_exists) does not exist
in the assessor label folder in the upload directory.

	
get_job_status()

	Get the status of a job given its jobid as assigned by the scheduler

	Parameters:

	jobid – job id assigned by the scheduler

	Returns:

	string from call to cluster.job_status or UNKNOWN.

	
launch()

	Method to launch a job on the grid

	
outlog_path()

	Method to return the path of outlog file for the job

	Returns:

	A string that is the absolute path to the OUTLOG file.

	
processor_spec_path()

	Method to return the path of processor file for the job

	Returns:

	A string that is the absolute path to the file.

	
set_launch(jobid)

	Set the date that the job started and its associated ID on XNAT.
Additionally, set the procstatus to JOB_RUNNING

	Parameters:

	jobid – The ID of the process assigned by the grid scheduler

	Returns:

	None

	
update_status()

	Update the satus of an XNAT Task object.

	Returns:

	the “new” status (updated) of the Task.

dax.spiders – Spider class

dax.processors – Processor class

Processor class define for Scan and Session.

	
class dax.processors.AutoProcessor(xnat, yaml_source, user_inputs=None)

	Auto Processor class for AutoSpider using YAML files

	
get_assessor_input_types()

	Enumerate the assessor input types for this. The default implementation
returns an empty collection; override this method if you are inheriting
from a non-yaml processor.
:return: a list of input assessor types

	
get_cmds(assr, jobdir)

	Method to generate the spider command for cluster job.

	Parameters:

	
	assessor – pyxnat assessor object

	jobdir – jobdir where the job’s output will be generated

	Returns:

	command to execute the spider in the job script

	
get_proctype()

	Return the processor name for this processor. Override this method if
you are inheriting from a non-yaml processor.
:return: the name of the processor type

	
parse_session(csess, sessions, pets=None)

	Method to run the processor parser on this session, in order to
calculate the pattern matches for this processor and the sessions
provided
:param csess: the active session. For non-longitudinal studies, this is
the session that the pattern matching is performed on. For longitudinal
studies, this is the ‘current’ session from which all prior sessions
are numbered for the purposes of pattern matching
:param sessions: the full, time-ordered list of sessions that should be
considered for longitudinal studies.
:return: None

	
class dax.processors.Processor(walltime_str, memreq_mb, spider_path, version=None, ppn=1, env=None, suffix_proc='', xsitype='proc:genProcData', job_template=None)

	Base class for processor

	
build_cmds(cobj, dir)

	Build the commands that will go in the PBS/SLURM script
:raises: NotImplementedError if not overridden from base class.
:return: None

	
default_settings_spider(spider_path)

	Get the default spider version and name

	Parameters:

	spider_path – Fully qualified path and file of the spider

	Returns:

	None

	
get_assessor_input_types()

	Enumerate the assessor input types for this. The default implementation
returns an empty collection; override this method if you are inheriting
from a non-yaml processor.
:return: a list of input assessor types

	
get_proctype()

	Return the processor name for this processor. Override this method if
you are inheriting from a non-yaml processor.
:return: the name of the processor type

	
set_spider_settings(spider_path, version)

	Method to set the spider version, path, and name from filepath

	Parameters:

	
	spider_path – Fully qualified path and file of the spider

	version – version of the spider

	Returns:

	None

	
should_run()

	Responsible for determining if the assessor should shouw up in session.

	Raises:

	NotImplementedError if not overridden.

	Returns:

	None

dax.log – Logging utility

	
dax.log.setup_critical_logger(name, logfile)

	Sets up the critical logger

	Parameters:

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns:

	logger object

	
dax.log.setup_debug_logger(name, logfile)

	Sets up the debug logger

	Parameters:

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns:

	logger object

	
dax.log.setup_error_logger(name, logfile)

	Sets up the error logger

	Parameters:

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns:

	logger object

	
dax.log.setup_info_logger(name, logfile)

	Sets up the info logger

	Parameters:

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns:

	logger object

	
dax.log.setup_warning_logger(name, logfile)

	Sets up the warning logger

	Parameters:

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns:

	logger object

dax.bin – Responsible for launching, building and updating a Task

File containing functions called by dax executables

	
dax.bin.build(settings_path, logfile, debug, projects=None, sessions=None, mod_delta=None, proj_lastrun=None, start_sess=None)

	
	Method that is responsible for running all modules and putting assessors
	into the database

	Parameters:

	
	settings_path – Path to the project settings file

	logfile – Full file of the file used to log to

	debug – Should debug mode be used

	projects – Project(s) that need to be built

	sessions – Session(s) that need to be built

	Returns:

	None

	
dax.bin.check_default_keys(yaml_file, doc)

	Static method to raise error if key not found in dictionary from
yaml file.
:param yaml_file: path to yaml file defining the processor
:param doc: doc dictionary extracted from the yaml file

	
dax.bin.launch_jobs(settings_path, logfile, debug, projects=None, sessions=None, writeonly=False, pbsdir=None, force_no_qsub=False)

	Method to launch jobs on the grid

	Parameters:

	
	settings_path – Path to the project settings file

	logfile – Full file of the file used to log to

	debug – Should debug mode be used

	projects – Project(s) that need to be launched

	sessions – Session(s) that need to be updated

	writeonly – write the job files without submitting them

	pbsdir – folder to store the pbs file

	force_no_qsub – run the job locally on the computer (serial mode)

	Returns:

	None

	
dax.bin.load_from_file(filepath, args, logger, singularity_imagedir=None, job_template=None)

	Check if a file exists and if it’s a python file
:param filepath: path to the file to test
:return: True the file pass the test, False otherwise

	
dax.bin.raise_yaml_error_if_no_key(doc, yaml_file, key)

	Method to raise an execption if the key is not in the dict
:param doc: dict to check
:param yaml_file: YAMLfile path
:param key: key to search

	
dax.bin.read_yaml_settings(yaml_file, logger)

	Method to read the settings yaml file and generate the launcher object.

	Parameters:

	yaml_file – path to yaml file defining the settings

	Returns:

	launcher object

	
dax.bin.set_logger(logfile, debug)

	Set the logging depth

	Parameters:

	
	logfile – File to log output to

	debug – Should debug depth be used?

	Returns:

	logger object

	
dax.bin.undo_processing(assessor_label, logger=None)

	Unset job information for the assessor on XNAT, Delete files, set to run.

	Returns:

	None

	
dax.bin.update_tasks(settings_path, logfile, debug, projects=None, sessions=None)

	Method that is responsible for updating a Task.

	Parameters:

	
	settings_path – Path to the project settings file

	logfile – Full file of the file used to log to

	debug – Should debug mode be used

	projects – Project(s) that need to be launched

	sessions – Session(s) that need to be updated

	Returns:

	None

dax.XnatUtils – Collection of utilities for upload/download and general access

XnatUtils contains functions to interface with XNAT using Pyxnat.

	
class dax.XnatUtils.AssessorHandler(label)

	Class to intelligently deal with the Assessor labels.
Make the splitting of the strings easier.

	
get_proctype()

	Get the proctype from the assessor label

	Returns:

	The proctype for the assessor

	
get_project_id()

	Get the project ID from the assessor label

	Returns:

	The XNAT project label

	
get_scan_id()

	Get the scan ID from teh assessor label

	Returns:

	The scan id for the assessor label

	
get_session_label()

	Get the session label from the assessor label

	Returns:

	The XNAT session label

	
get_subject_label()

	Get the subject label from the assessor label

	Returns:

	The XNAT subject label

	
is_valid()

	Check to see if we have a valid assessor label (aka not None)

	Returns:

	True if valid, False if not valid

	
select_assessor(intf)

	Run Interface.select() on the assessor label

	Parameters:

	intf – pyxnat.Interface object

	Returns:

	The pyxnat EObject of the assessor

	
class dax.XnatUtils.CachedImageAssessor(intf, assr_element, parent)

	Class to cache the XML information for an assessor on XNAT

	
get(name)

	Get the value of a variable associated with the assessor

	Parameters:

	name – Variable name to get the value of

	Returns:

	Value of the variable, otherwise ‘’.

	
get_in_resources()

	
	Get a list of dictionaries of info for the CachedResource objects
	for “in” type

	Returns:

	List of dictionaries of info for the CachedResource objects
for “in” type

	
get_out_resources()

	
	Get a list of dictionaries of info for the CachedResource objects
	for “out” type

	Returns:

	List of dictionaries of info for the CachedResource objects
for “out” type

	
get_resources()

	Makes a call to get_out_resources.

	Returns:

	List of dictionaries of info for the CachedResource objects
for “out” type

	
in_resources()

	Get a list of CachedResource objects for “in” type

	Returns:

	List of CachedResource objects for “in” type

	
info()

	Get a dictionary of information associated with the assessor

	Returns:

	None

	
label()

	Get the label of the assessor

	Returns:

	String of the assessor label

	
out_resources()

	Get a list of CachedResource objects for “out” type

	Returns:

	List of CachedResource objects for “out” type

	
parent()

	Get the parent element of the assessor (session)

	Returns:

	The session element XML string

	
class dax.XnatUtils.CachedImageScan(intf, scan_element, parent)

	Class to cache the XML information for a scan on XNAT

	
get(name)

	Get the value of a variable associated with a scan.

	Parameters:

	name – Name of the variable to get the value of

	Returns:

	Value of the variable if it exists, or ‘’ otherwise.

	
get_resources()

	Get a list of dictionaries of info for each CachedResource.

	Returns:

	List of dictionaries of infor for each CachedResource.

	
info()

	Get lots of variables assocaited with this scan.

	Returns:

	Dictionary of infomation about the scan.

	
label()

	Get the ID of the scan

	Returns:

	String of the scan ID

	
parent()

	Get the parent of the scan

	Returns:

	XML String of the scan parent

	
resources()

	Get a list of the CachedResource (s) associated with this scan.

	Returns:

	List of the CachedResource (s) associated with this scan.

	
session()

	Get the session associated with this object
:return: session asscoiated with this object

	
class dax.XnatUtils.CachedImageSession(intf, proj, subj, sess)

	Enumeration for assessors function, to control what assessors are returned

	
assessors(select=(0,))

	Get a list of CachedImageAssessor objects for the XNAT session

	Returns:

	List of CachedImageAssessor objects for the session.

	
full_object()

	Return a the full pyxnat Session object of this sessions

	Returns:

	pyxnat Session object

	
get(name)

	Get the value of a variable name in the session

	Parameters:

	name – The variable name that you want to get the value of

	Returns:

	The value of the variable or ‘’ if not found.

	
get_resources()

	
	Return a list of dictionaries that correspond to the information
	for each resource

	Returns:

	List of dictionaries

	
has_shared_project()

	Get the project if shared.

	Returns:

	project_shared_id if shared, None otherwise

	
info()

	Get a dictionary of lots of variables that correspond to the session

	Returns:

	Dictionary of variables

	
label()

	Get the label of the session

	Returns:

	String of the session label

	
resources()

	Get a list of CachedResource objects for the session

	Returns:

	List of CachedResource objects for the session

	
scans()

	Get a list of CachedImageScan objects for the XNAT session

	Returns:

	List of CachedImageScan objects for the session.

	
session()

	Get the session associated with this object
:return: session asscoiated with this object

	
class dax.XnatUtils.CachedResource(element, parent)

	Class to cache resource XML info on XNAT

	
get(name)

	Get the value of a variable associated with the resource

	Parameters:

	name – Variable name to get the value of

	Returns:

	The value of the variable, ‘’ otherwise.

	
info()

	Get a dictionary of information relating to the resource

	Returns:

	dictionary of information about the resource.

	
label()

	Get the label of the resource

	Returns:

	String of the label of the resource

	
parent()

	Get the resource parent XML string

	Returns:

	The resource parent XML string

	
class dax.XnatUtils.InterfaceTemp(xnat_host=None, xnat_user=None, xnat_pass=None, smtp_host=None, timeout_emails=None, xnat_timeout=300, xnat_retries=4, xnat_wait=600)

	
	Extends the pyxnat.Interface class to make a temporary directory, write the
	cache to it and then blow it away on the Interface.disconnect call()
NOTE: This is deprecated in pyxnat 1.0.0.0

Using netrc to get username password if not given.

	
authenticate()

	Authenticate to XNAT.

Connect to XNAT and try to Disconnect the JSESSION before reconnecting.
Raise XnatAuthentificationError if it failes.

	Returns:

	True or False

	
connect()

	Connect to XNAT.

	
disconnect()

	Tell XNAT to disconnect this session

	
get_assessor_out_resources(projectid, subjectid, sessionid, assessorid)

	
	Gets a list of all of the resources for an assessor associated to a
	session/subject/project requested by the user.

	Parameters:

	
	(string) (assessorid) – ID of a project on XNAT

	(string) – ID/label of a subject

	(string) – ID/label of a session

	(string) – ID/label of an assessor to get resources for

	Returns:

	List of resources for the assessor

	
get_assessor_path(project, subject, session, assessor)

	Given project, subject, session, assessor (strings),
returns assessor path (string)

	
get_assessor_resource_path(project, subject, session, assessor, resource)

	Given project, subject, session, assessor, resource (strings),
returns assessor resource path (string)

	
get_assessors(projectid, subjectid, sessionid)

	
	List all the assessors that you have access to based on passed
	session/subject/project.

	Parameters:

	
	(string) (sessionid) – ID of a project on XNAT

	(string) – ID/label of a subject

	(string) – ID/label of a session

	Returns:

	List of all the assessors

	
get_experiment_path(project, subject, session)

	Given project, subject, session (strings),
returns session path (string)

	
get_project_assessors(projectid)

	List all the assessors that you have access to based on passed project.

	Parameters:

	(string) (projectid) – ID of a project on XNAT

	Returns:

	List of all the assessors for the project

	
get_project_path(project)

	Given project (string),
returns project path (string)

	
get_project_scans(project_id, include_shared=True)

	List all the scans that you have access to based on passed project.

	Parameters:

	
	(string) (projectid) – ID of a project on XNAT

	(boolean) (include_shared) – include the shared data in this project

	Returns:

	List of all the scans for the project

	
get_resources(project_id)

	Given project (string), return list of project’s resources

	
get_scan_path(project, subject, session, scan)

	Given project, subject, session, scan (strings),
returns scan path (string)

	
get_scan_resource_path(project, subject, session, scan, resource)

	Given project, subject, session, scan, resource (strings),
returns scan resource path (string)

	
get_scan_resources(projectid, subjectid, sessionid, scanid)

	
	Gets a list of all of the resources for a scan associated to a
	session/subject/project requested by the user.

	Parameters:

	
	(string) (scanid) – ID of a project on XNAT

	(string) – ID/label of a subject

	(string) – ID/label of a session

	(string) – ID of a scan to get resources for

	Returns:

	List of resources for the scan

	
get_scans(projectid, subjectid, sessionid)

	
	List all the scans that you have access to based on passed
	session/subject/project.

	Parameters:

	
	(string) (sessionid) – ID of a project on XNAT

	(string) – ID/label of a subject

	(string) – ID/label of a session

	Returns:

	List of all the scans

	
get_session_resources(projectid, subjectid, sessionid)

	
	Gets a list of all of the resources for a session associated to a
	subject/project requested by the user

	Parameters:

	
	(string) (sessionid) – ID of a project on XNAT

	(string) – ID/label of a subject

	(string) – ID/label of a session to get resources for

	Returns:

	List of resources for the session

	
get_sessions(projectid=None, subjectid=None)

	
	List all the sessions either:
	

	that you have access to

	or
	
	in a single project (and single subject) based on kargs

	Parameters:

	
	projectid – ID of a project on XNAT

	subjectid – ID/label of a subject

	Returns:

	List of sessions

	
get_sessions_minimal(projectid)

	
	Parameters:

	projectid – ID of a project on XNAT

	Returns:

	List of sessions

	
get_sgp_assessor_path(project, subject, assessor)

	Given project, subject, assessor (strings),
returns assessor path (string)

	
get_subject_path(project, subject)

	Given project, subject (strings),
returns subject path (string)

	
get_subject_resources(project_id, subject_id)

	Given project and subject (strings), return list of subject’s resources

	
get_subjects(project_id)

	Given project_id (string), return list of subjects in project

	
list_project_assessor_types(projectid)

	List all the assessors that you have access to based on passed project.

	Parameters:

	(string) (projectid) – ID of a project on XNAT

	Returns:

	List of all the assessors for the project

	
list_project_assessors(projectid)

	List all the assessors that you have access to based on passed project.

	Parameters:

	(string) (projectid) – ID of a project on XNAT

	Returns:

	List of all the assessors for the project

	
select_assessor(project, subject, session, assessor)

	Given project, subject, session, assessor (strings),
returns assessor object

	
select_assessor_resource(project, subject, session, assessor, resource)

	Given project, subject, session, assessor, resource (strings),
returns assessor resource object

	
select_experiment(project, subject, session)

	Given project, subject, session (strings),
returns session (experiment object)
Same as select_session

	
select_project(project)

	Given project (string),
returns project object

	
select_scan(project, subject, session, scan)

	Given project, subject, session, scan (strings),
returns scan object

	
select_scan_resource(project, subject, session, scan, resource)

	Given project, subject, session, scan, resource (strings),
returns scan resource object

	
select_session(project, subject, session)

	Given project, subject, session (strings),
returns session (experiment object)
Same as select_experiment

	
select_sgp_assessor(project, subject, assessor)

	Given project, subject, assessor (strings),
returns assessor object

	
select_subject(project, subject)

	Given project, subject (strings),
returns subject object

	
class dax.XnatUtils.SpiderProcessHandler(script_name, suffix, project=None, subject=None, experiment=None, scan=None, alabel=None, assessor_handler=None, time_writer=None, host=None)

	Class to handle the uploading of results for a spider.

	
add_file(filepath, resource)

	
	Add a file in the assessor in the upload directory based on the
	resource name as will be seen on XNAT

	Parameters:

	
	filepath – Full path to a file to upload

	resource – The resource name it should appear under in XNAT

	Returns:

	None

	
add_folder(folderpath, resource_name=None)

	Add a folder to the assessor in the upload directory.

	Parameters:

	
	folderpath – Full path to the folder to upoad

	resource_name – Resource name chosen (if different than basename)

	Raises:

	
	shutil.Error [https://docs.python.org/3/library/shutil.html#shutil.Error] – Directories are the same

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – The directory doesn’t exist

	Returns:

	None

	
add_pdf(filepath)

	Add the PDF and run ps2pdf on the file if it ends with .ps

	Parameters:

	filepath – Full path to the PDF/PS file

	Returns:

	None

	
add_snapshot(snapshot)

	Add in the snapshots (for quick viewing on XNAT)

	Parameters:

	snapshot – Full path to the snapshot file

	Returns:

	None

	
clean(directory)

	Clean directory if no error and pdf created

	Parameters:

	directory – directory to be cleaned

	
done()

	
	Create a flag file that the assessor is ready to be uploaded and set
	the status as READY_TO_UPLOAD

	Returns:

	None

	
file_exists(fpath)

	Check to see if a file exists

	Parameters:

	fpath – full path to a file to assert it exists

	Returns:

	True if it exists, False if it doesn’t

	
folder_exists(fpath)

	Check to see if a folder exists

	Parameters:

	fpath – Full path to a folder to assert it exists

	Returns:

	True if it exists, False if it doesn’t

	
print_copying_statement(label, src, dest)

	Print a line that data is being copied to the upload directory

	Parameters:

	
	label – The XNAT resource label

	src – Source directory or file

	dest – Destination directory or file

	Returns:

	None

	
print_err(msg)

	Print error message using time writer if set, print otherwise

	Parameters:

	msg – Message to print

	Returns:

	None

	
print_msg(msg)

	Prints a message using TimedWriter or print

	Parameters:

	msg – Message to print

	Returns:

	None

	
set_assessor_status(status)

	Set the status of the assessor based on passed value

	Parameters:

	status – Value to set the procstatus to

	Except:

	All catchable errors.

	Returns:

	None

	
set_error()

	Set the flag for the error to 1

	Returns:

	None

DAX Manager

Table of Contents:

	About

	How to set it up

	DAX 1

	How to add a Module in DAX 1

	How to add a Process in DAX 1

	LDAX

	How to add a Module in LDAX

	How to add a Process in LDAX

About

DAX Manager is a non-required tool hosted in REDCap which allows you to quickly generate settings files that can be
launched with DAX. This alleviates the need to manual write settings files and makes updating scan types, walltimes, etc
a much quicker and streamlined process.

How to set it up

The main instrument should be called General and contains a lot of standard variables that are required for DAX to
interface with DAX Manager appropriately. For convenience, a copy of the latest data dictionary has been included
and can be downloaded here for reference. It is suggested to use this version even if you do not plan on running all of the
spiders because it is currently being used in production

https://github.com/VUIIS/dax/blob/master/docs/files/dax_manager/XNATProjectSettings_DataDictionary_2016-01-21.csv

DAX 1

How to add a Module in DAX 1

Variables used in a module must all start with the FULL module name. For example, consider “Module dcm2niix”. All of the variables for this module must start with “module_dcm2niix_”. There are 2 required variables. The first is the “Module File” variable. This variable for “Module dcm2niix” would be called “module_dcm2niix_file”. The “Action Tags / Field Annotation” should be @DEFAULT=”MODULE_NAME”. See below for an example.

[image: _images/dcm2niix_file.PNG]

The second required variable is the “Module Arguments” variable. In the case of “Module dcm2niix”, this variable would be called “module_dcm2niix_args”. See below for an example.

[image: _images/dcm2niix_args.PNG]

How to add a Process in DAX 1

Processes are setup very similarly to Modules. There are 2 required variables, “Processor YAML File” and “Processor Arguments”. The variable names use slighly different naming conventions as Modules. For example, consider “Processor slant_v1”. The “Processor YAML File” variable should be named “slant_v1_file” and the “Action Tags / Field Annotation” field should contain the full name of the processor (@DEFAULT=”slant_v1.0.0_processor.yaml”). See below for an example.

[image: _images/slant_file.PNG]

The second required variable, “Processor Arguments” follows the same naming conventions. See below for an example.

[image: _images/slant_args.PNG]

LDAX

How to add a Module in LDAX

Variables used in a module must all start with the text immediately AFTER Module. For example, consider
“Module dcm2nii philips”. All of the variables for this module must start with “dcm2nii_philips_”. One required variable
is the “on” variable. This variable, again, in the case of “Module dcm2nii philips”, would be called “dcm2nii_philips_on”.
This is used to check to see if the module related to this record in REDCap should be run for your project or not. It must
also be of the yes/no REDCap type. If you do not have this variable included, you will get errors when you run dax_manager.
The second required variable is the “Module name” variable. In the case of “Module dcm2nii philips”, this variable is called
“dcm2nii_philips_mod_name”. This relates to the class name of the python module file. This information is stored in the
REDCap “Field Note” (See below).

[image: _images/dax_manager_module_field_note.png]

This variable must be a REDCap Text Box type (as do all other variables at this point). This must be entered in the
following format: “Default: <Module_Class_Name>”. All other variables that are used must also start with the “dcm2nii_philips_”
prefix and must match those of the module init.

Additionally, for the sake of user-friendliness, all variables should use REDCap’s branching logic to only appear if the
module is “on”. It is important to note that in all cases, the REDCap “Field Label” is not used in any automated fashion,
but should be something obvious to the users.

How to add a Process in LDAX

Just like in the case of Modules, Processes follow a close formatting pattern. Similarly, all process variables should
start with the text immediately after “Process “. For this example, consider “Process Multi_Atlas”. Just like in the case
of the modules, the first variable should be a REDCap yes/no and should be called “multi_atlas_on”. The remainder of the
variables should all be of REDCap type “Text Box”. The next required variable is the “Processor Name” variable which must
be labeled with the “<Process Name>_proc_name” suffix. In the case of “Process Multi_Atlas”, this is called
“multi_atlas_proc_name”. Just like in the case of the Module, the class name of the processor should be entered in the REDCap
Field Note after “Default: “.

There are several other required variables which will be enumerated below (suffix listed first):

	_suffix_proc - Used to determine what the processor suffix (if any should be)

	_version - The version of the spider (1.0.0, 2.0.1 etc)

	_walltime - The amount of walltime to use for the spider when executed on the grid

	_mem_mb - The amount of ram to request for the job to run. Note this should be in megabytes

	_scan_types - If writing a ScanProcessor, this is required. If writing a SessionProcessor, this is not required. This, in the case of a ScanProcessor, is used to filter out the scan types that the processor will accept to run the spider on.

Just like in the case of a Module, all variables other than the “on” variable should use REDCap branching logic to only
be visible when the process is “on”.

Contributors

DAX is a multi-institution collaborative effort of the following labs:

MASI [https://masi.vuse.vanderbilt.edu/index.php/Main_Page/] at Vanderbilt University, Nashville, Tennessee, USA

Center for Cognitive Medicine [https://www.vumc.org/ccm/] at Vanderbilt University Medical Center, Nashville, Tennessee, USA

TIG [http://cmictig.cs.ucl.ac.uk/] at UCL (University College London), London, UK

How To Contribute

We encourage all collaborations! However, we follow a pull-request work flow to help facilitate a simplified code-review process.
If you would like to contribute, we kindly request that any of your work be done in
a branch. Rules for branching and merging are outlined below:

	Branches - The scope of your branch should be narrow. Do not make a branch only for changing documentation, and then refactor how task.py works. These should be two totally separate branches.

	Testing - You should test your branch before making a pull request. Do not make a pull request with untested code.

	Committing - Use helpful commit messages. Do not use messages like “updates”, “bug fix”, and “updated a few files” etc. Please make these commit messages at least somewhat helpful. Use lots of commits, do not make 1 bulk commit of all of the changes that you make. This practice makes it hard for others to review.

	Pull request - When you are ready to make a pull request, please try to itemize all of the changes that you made in at least moderate depth. This will alert everyone reviewing the code of possible things to check to make sure that you didn’t break anything.

	Merging - Do NOT merge your own pull request. Contributors should review each and every pull request before merging into the master branch. Please allow at least a few days before commenting and asking for status. If the depth of changes is deep, please allow at least a few weeks.

	Master branch - NEVER commit to the master branch directly unless there is a serious bug fix.

If you are unfamiliar with branches in github, please see the link below:

Working with Branches [https://help.github.com/articles/using-pull-requests/]

FAQ

These FAQs assume that you have read the XNAT documentation and or are familiar with navigating through the web UI.
If you are not, you can read the XNAT documentation here [https://wiki.xnat.org/display/XNAT16/Home/].

	
	What is DAX?
	DAX is an open source project that uses the pyxnat wrapper for the REST api to automate pipeline running on a DRMAA compliant grid.

	
	What are Modules?
	Modules are a special class in DAX. They represent, generally, a task that should not be performed on the grid. The purpose for this was to not fill up the grid queue with jobs that take 20-30 seconds. Examples of such tasks could be converting a DICOM to a NIfTI file, changing the scan type, archiving a session from the prearchive, or performing skull-stripping. As you can see, these tasks can all be considered “light-weight” and thus probably don’t have a place on the grid.

	
	What are Spiders?
	Spiders are a python script. The purpose of the script is to download data from XNAT, run an image processing pipeline, and then prepare the data to be uploaded to XNAT. Spiders are run on the grid because they can take hours to days.

	
	How do I know the EXACT command line call that was made?
	The PBS resource contains the script that was submitted to the grid scheduler for execution. You can view this file for the exact command line call(s) that were executed on the grid.

	
	I think I found a bug, what should I do?
	The easiest way to get a bug fixed is to post as much information as you can on the DAX github issue tracker [https://github.com/VUIIS/dax/issues]. If possible, please post the command line call you made (with any sensitive information removed) and the stack trace or error log in question.

	
	I have an idea of something I want to add. How do I go about adding it?
	Great! We’d love to see what you have to include! Please read the guidelines on how to contribute.

DAX Processors

About

DAX pipelines are defined by creating YAML text files. If you are not familiar with YAML, start here:
https://learnxinyminutes.com/docs/yaml/.

A processor YAML file defines the Environment, Inputs, Commands, and Outputs of your pipeline.

Processor Repos

There are several existing processors that can be used without modification. The processors in these
repositories can also provide valuable examples.

https://github.com/VUIIS/dax_yaml_processor_examples

https://github.com/VUIIS/yaml_processors (private, internal use only)

Overview

The processor file defines how a script to run a pipeline should be created. DAX will use the processor to generate scripts to be submitted to your cluster as jobs. The script will contain the
commands to download the inputs from XNAT, run the pipeline, and prepare the results to be uploaded back to XNAT (the actual uploading is performed by DAX via dax upload).

A “Simple” Example

moreauto: true
inputs:
 default:
 container_path: MRIQA_v1.0.0.simg
 xnat:
 scans:
 - name: scan_t1
 types: MPRAGE
 resources:
 - resource: NIFTI
 ftype: FILE
 varname: t1_nifti
outputs:
 - path: stats.txt
 type: FILE
 resource: STATS
 - path: report.pdf
 type: FILE
 resource: PDF
 - path: DATA
 type: DIR
 resource: DATA
command: >-
 singularity
 run
 --contain
 --cleanenv
 --home $INDIR
 --bind $INDIR:/dev/shm
 --bind $INDIR:/tmp
 --bind $INDIR:/INPUTS
 --bind $OUTDIR:/OUTPUTS
 {container_path}
 --t1_nifti /INPUTS/{t1_nifti}
attrs:
 walltime: '36:00:00'
 memory: 8192

Parts of the Processor YAML

All processor YAML files should start with these two lines:

moreauto: true

The primary components of a processor YAML file are:

	inputs

	outputs

	command

	attrs

Each of these components is required.

inputs

The inputs section defines the files and parameters to be prepared for the pipeline. Currently, the only subsections of inputs supported are defaults and xnat.

The defaults subsection can contain paths to local resources such as singularity containers, local codebases, local data to be used by the pipeline. It can essentially contain any value
that needs to be passed directly to the command template (see below).

The xnat section defines the files, directories or values that are extracted from XNAT and passed to the command. Currently, the subsections of xnat that are supported are scans, assessors, attrs, and filters. Each of these subsections contains an array with a specific set of fields for each item in the array.

xnat scans

Each xnat scans item requires a types field. The types field is used to match against the scan type attribute on XNAT. The value can be a single string or a comma-separated list. Wildcards are also supported.

By default, any scan that matches will be included. You can exclude scans with a quality of unusable on XNAT by including the field needs_qc with value of True. The default is to run anything, i.e. a needs_qc value of False.
Note that questionable is treated the same as usable, so they’ll always run.

The resources subsection of each xnat scan should contain a list of resources to download from the matched scan. Each resource requires fields for ftype and var.

ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download individual files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained. DIRJ will also download the directory but strips extraneous intermediate directories from the produced path as implemented by the -j flag of unzip.

The var field defines the tag to be replaced in the command string template (see below).

The optional fmatch field defines a regular expression to apply to filter the list of filenames in the resource.

xnat assessors

Each xnat assessor item requires a proctype field. The proctype field is used to match against the assessor proctype attribute on XNAT. The value can be a single string or a comma-separated list. Wildcards are also supported.

By default, any assessor that matches proctype will be included. However if needs_qc is set to True, assessors with a qcstatus of “Needs QA”, “Bad”, “Failed”, “Poor”, or “Do Not Run” will be excluded.

The resources subsection of each xnat assessor should contain a list of resources to download from the matched scan. Each resource requires fields for ftype and var.

The ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download individual files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained. DIRJ will also download the directory but strips extraneous intermediate directories from the produced path as impelemented by the “-j” flag of unzip.

The var field defines the tag to be replaced in the command string template (see below).

Optional fields for a resource are fmatch, fdest and fcount. fmatch defines a regular expression to apply to filter the list of filenames in the resource. fcount can be used to limit the number of files matched. By default, only 1 file is downloaded.
The inputs for some containers are expected to be in specific locations with specific filenames. This is accomplished using the fdest field. The file or directory gets copied to /INPUTS and renamed to the name specified in fdest.

xnat attrs

You can evaluate attributes at the subject, session, or scan level. Any fields that are accessible via the XNAT API can be queried. Each attrs item should contain a varname, object, and attr.
varname specifies the tag to be replaced in the command string template. object is the XNAT object type to query and can be either subject, session, or scan. attr is the XNAT field to query. If the object type is scan, then a scan name from the xnat scans section must be included with the ref field.

For example:

attrs:
 - varname: project
 object: session
 attr: project

This will extract the value of the project attribute from the session object and replace {project} in the command template.

xnat filters

filters allows you to filter a subset of the cartesian product of the matched scans and assessors. Currently, the only filter implemented is a match filter. It will only create the assessors where the specified list of inputs match. This is used when you want to link a set of assessors that all use the same initial scan as input.

For example:

filters:
 - type: match
 inputs: scan_t1,assr_freesurfer/scan_t1

This will tell DAX to only run this pipeline where the value for scan_t1 and assr_freesurfer/scan_t1 are the same scan.

outputs

The outputs section defines a list files or directories to be uploaded to XNAT upon completion of the pipeline. Each output item must contain fields path, type, and resource. The path value contains the local relative path of the file or directory to be uploaded. The type of the path should either be FILE or DIR. The resource is the name of resource of the assessor created on XNAT where the output is to be uploaded.

For every processor, a PDF output with resource named PDF is required and must be of type FILE.

command

The command field defines a string template that is formatted using the values from inputs.

Each tag specified inside curly braces (“{}””) corresponds to a field in the defaults input section, or to a var field from a resource on an input or to a varname in the xnat attrs section.

Not all var must be used.

attrs

The attrs section defines miscellaneous other attributes including cluster parameters. These values replace tags in the jobtemplate.

jobtemplate

The jobtemplate is a text file that contains a template to create a batch job script.

Versioning

By default, name and version are parsed from the container file name, based on the format:
<NAME>_v<major.minor.revision>.simg where<NAME>_v<major> is the proctype.

The YAML file can override these by using any of the top level fields procversion, procname, and/or proctype. procversion specifies the major.minor.revision, e.g. 1.0.2. procname specifies the name only without version, e.g. mprage. proctype is the name and major version, e.g. mprage_v1.
If only procname is specified, the version is parsed from the container name.
If only procversion is specified, the name is parsed from the container name.
If proctype is specified, it will override everything else to determine proctype.

Notes on Singularity run options

–cleanenv avoids env confusion, and –contain prevents accidentally using code from the host filesystem. However, with –contain, some spiders will need to have specific temp space on the host attached. E.g. for some versions of Freesurfer, –bind ${INDIR}:/dev/shm. For compiled Matlab spiders, we need to provide –home $INDIR to avoid .mcrCache collisions in temp space when multiple spiders are running. And, some cases may require ${INDIR}:/tmp or /tmp:/tmp.

DAX Processors, version 3

About

DAX pipelines are defined by creating YAML text files. If you are not familiar with YAML, start here:
https://learnxinyminutes.com/docs/yaml/.

A processor YAML file defines the Environment, Inputs, Commands, and Outputs of your pipeline.

Version 3 processors have a number of new options and conveniences.

Processor Repos

There are several existing processors that can be used without modification. The processors in these
repositories can also provide valuable examples.

https://github.com/VUIIS/dax_yaml_processor_examples

https://github.com/VUIIS/yaml_processors (private, internal use only)

Overview

The processor file defines how a script to run a pipeline should be created. DAX will use the processor to generate scripts to be submitted to your cluster as jobs. The script will contain the
commands to download the inputs from XNAT, run the pipeline, and prepare the results to be uploaded back to XNAT (the actual uploading is performed by DAX via dax upload).

A Basic Example

procyamlversion: 3.0.0-dev.0 # Indicates to run as a v3 processor

containers: # Containers we will ref in the command section
 - name: EXAMP # Reference by this name in command section
 path: example_v2.0.0.sif # Name/path that is replaced in command section
 source: docker://vuiiscci/example:v2.0.0 # Not used, but good practice to set it

requirements: # Requirements for the cluster node, substituted into SBATCH section of job template
 walltime: 0-2 # Time to request - SLURM supports the format DAYS-HOURS
 memory: 16G

inputs:
 vars: # Keyvalues to substitute in the command, for passing static settings
 - param1: param1value
 xnat:
 attrs: # Values to extract from xnat at the specified level of the current instance
 - varname: scanID # Name to be used to dereference later
 object: scan # Source, of: project, subject, session, scan, assessor
 attr: ID # Name of the field in xnat
 ref: scan_fmri # From which object in inputs, referred to by name
 scans:
 - name: scan_fmri # the name of this scan to dereference later
 types: fMRI_run* # the scan types to match on the session in XNAT
 nifti: fmri.nii.gz # Shortcut to download file in NIFTI resource as fmri.nii.gz
 resources: # To get files in other resources
 - resource: EDAT # Name of the resource
 fdest: edat.txt # Download the file as edat.txt
 varname: edat_txt # Reference for command string substitution
 assessors:
 - name: assr_preproc
 proctypes: preproc-fmri_v2
 resources:
 - {resource: FILTERED_DATA, fdest: filtered_data.nii.gz}

outputs:
 - pdf: report*.pdf # Matching file uploaded to PDF resource
 - stats: stats.txt # Matching file uploaded to STATS resource
 - dir: PREPROC # Matching directory (PREPROC) uploaded to PREPROC resource
 - path: inputpathname # General purpose for other outputs
 type: DIR # Type is FILE or DIR
 resource: RESOURCENAME # Store it in resource RESOURCENAME

Available commands are 'singularity_run' and 'singularity_exec'. These include default
flags --contain --cleanenv, and mount points for temp space plus INPUTS and OUTPUTS
command:
 type: singularity_run
 extraopts: [] # Appends to default options for the run command
 container: EXAMP # Name of the container in the list above
 args: >-
 --fmri_file /INPUTS/fmri.nii.gz
 --filtered_file /INPUTS/filtered_data.nii.gz
 --param1 {param1value}
 --scan_id {scanID}
 --edat_txt /INPUTS/{edat_txt}

description: |
 Example description that gets printed to every PDF created by this processor
 1. step 1 does something cool
 2. step 2 does this other thing

Specify the job template to use (examples: https://github.com/VUIIS/dax_templates/)
job_template: job_template_v3.txt

Parts of the Processor YAML

inputs (required)

The inputs section defines the files and parameters to be prepared for the pipeline. Currently, the only subsections of inputs supported are vars and xnat.

The vars subsection can store parameters to be passed as pipeline options, such as smoothing kernel size, etc that may be more conveniently coded here to substitute into the command arguments.

The xnat section defines the files, directories or values that are extracted from XNAT and passed to the command. Currently, the subsections of xnat that are supported are scans, assessors, attrs, and filters. Each of these subsections contains an array with a specific set of fields for each item in the array.

xnat scans

Each xnat scans item requires a types field. The types field is used to match against the scan type attribute on XNAT. The value can be a single string or a comma-separated list. Wildcards are also supported.

The resources subsection of each xnat scan should contain a list of resources to download from the matched scan.

ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download individual files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained. DIRJ will also download the directory but strips extraneous intermediate directories from the produced path as implemented by the -j flag of unzip.

The varname field defines tags to be replaced in the command string template (see below).

The optional fmatch field defines a regular expression to apply to filter the list of filenames in the resource. fmulti affects how inputs are handled when there are multiple matching files in a resource. By default, this situation causes an exception, but if fmulti is set to any1, a single (arbitrary) file is selected from the matching files instead.

By default, any scan that matches will be included as an available input. Several optional settings affect this:

	If needs_qc is True and require_usable is False or not specified, assessors that would have a scan as an input will be created, but will not run if the scan is marked unusable.

	If needs_qc is True and require_usable is also True, assessors that would have a scan as an input will be created, but will not run unless the scan is marked usable.

	If skip_unusable is True, assessors that would have an unusable scan as an input will not even be created.

	keep_multis may be all (the default); first; last; or an index 1,2,3,… This applies when there are multiple scans in the session that match as possible inputs. Normally all matching scans are used as inputs, multiplying assessors as needed. When first is specified, only the first matching scan will be used as an input, reducing the number of assessors built by a factor of the number of matching scans. “First” is defined as alphabetical order by scan ID, cast to lowercase. The exact scan type is not considered; only whether there is a match with the types specified.

xnat assessors

Each xnat assessor item requires a proctype field. The proctype field is used to match against the assessor proctype attribute on XNAT. The value can be a single string or a comma-separated list. Wildcards are also supported.

Any assessor that matches proctype will be included as a possible input. However if needs_qc is set to True, input assessors with a qcstatus of “Needs QA”, “Bad”, “Failed”, “Poor”, or “Do Not Run” will cause the new assessor not to run.

The resources subsection of each xnat assessor should contain a list of resources to download from the matched scan.

The ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download individual files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained. DIRJ will also download the directory but strips extraneous intermediate directories from the produced path as impelemented by the “-j” flag of unzip.

The varname field defines the tag to be replaced in the command string template (see below).

Optional fields for a resource are fmatch and fdest. fmatch defines a regular expression to apply to filter the list of filenames in the resource. The inputs for some containers are expected to be in specific locations with specific filenames. This is accomplished using the fdest field. The file or directory gets copied to /INPUTS and renamed to the name specified in fdest.

xnat attrs

You can evaluate attributes at the subject, session, or scan level. Any fields that are accessible via the XNAT API can be queried. Each attrs item should contain a varname, object, and attr.
varname specifies the tag to be replaced in the command string template. object is the XNAT object type to query and can be either subject, session, or scan. attr is the XNAT field to query. If the object type is scan, then a scan name from the xnat scans section must be included with the ref field.

For example:

attrs:
 - varname: project
 object: session
 attr: project

Or equivalently
attrs:
 - {varname: project, object: assessor, attr: project}

This will extract the value of the project attribute from the assessor object and replace {project} in the command template.

xnat filters

filters allows you to filter a subset of the cartesian product of the matched scans and assessors. Currently, the only filter implemented is a match filter. It will only create the assessors where the specified list of inputs match. This is used when you want to link a set of assessors that all use the same initial scan as input.

For example:

filters:
 - type: match
 inputs: scan_t1,assr_freesurfer/scan_t1

This will tell DAX to only run this pipeline where the value for scan_t1 and assr_freesurfer/scan_t1 are the same scan.

outputs

The outputs section defines a list files or directories to be uploaded to XNAT upon completion of the pipeline. Each output item must contain fields path, type, and resource. The path value contains the local relative path of the file or directory to be uploaded. The type of the path should either be FILE or DIR. The resource is the name of resource of the assessor created on XNAT where the output is to be uploaded.

For every processor, a PDF output with resource named PDF is required and must be of type FILE.

PDF and STATS outputs, as well as DIR type outputs, have shortcuts as shown in the example.

command

The command field defines a string template that is formatted using the values from inputs.

Each tag specified inside curly braces (“{}””) corresponds to a field in the defaults input section, or to a var field from a resource on an input or to a varname in the xnat attrs section.

See the example for explanations of the other fields.

jobtemplate

The jobtemplate is a text file that contains a template to create a batch job script.

Versioning

Processor name and version are parsed from the processor file name, based on the format
<NAME>_v<major.minor.revision>.yaml. <NAME>_v<major> will be used as the proctype.

Notes on singularity options

The default options are SINGULARITY_BASEOPTS in dax/dax/processors_v3.py:

--contain --cleanenv
--home $JOBDIR
--bind $INDIR:/INPUTS
--bind $OUTDIR:/OUTPUTS
--bind $JOBDIR:/tmp
--bind $JOBDIR:/dev/shm

$JOBDIR, $INDIR, $OUTDIR are available at run time, and refer to locations on the filesystem of the node where the job is running.

Singularity has default binds that differ between installations. –contain disables these to prevent cross-talk with the host filesystem. And –cleanenv prevents cross-talk with the host environment. However, with –contain, some spiders will need to have specific temp space on the host attached. E.g. for some versions of Freesurfer, –bind ${INDIR}:/dev/shm. For compiled Matlab spiders, we need to provide –home $INDIR to avoid .mcrCache collisions in temp space when multiple spiders are running. And, some cases may require ${INDIR}:/tmp or /tmp:/tmp. Thus the defaults above.

The entire singularity command is built as:

singularity <run|exec> <SINGULARITY_BASEOPTS> <extraopts> <container> <args>

Subject-Level Processors

As of version 2.7, dax supports subject-level processors, in addition to session-level. The subject-level
processors can include inputs across multiple sessions within the same subject. In the processor yaml, a subject-level processor is
implied by including the “sessions” level between inputs.xnat and scans/assessors. Each session requires the attribute types.
The types are matched against the XNAT field xnat:imageSessionData/session_type. Currently the match must be exact.

To set the session type of a session, you can use dax/pyxnat:

xnat.select_session(PROJ, SUBJ, SESS).attrs.set('session_type', SESSTYPE)

Below is an example of a subject-level processor that will include an assessor from two different sessions of session types Baseline and Week12.

procyamlversion: 3.0.0-dev.0
containers:
 - name: EMOSTROOP
 path: fmri_emostroop_v2.0.0.sif
 source: docker://bud42/fmri_emostroop:v2
requirements:
 walltime: 0-2
 memory: 16G
inputs:
 xnat:
 sessions:
 - types: Baseline
 assessors:
 - name: assr_emostroop_a
 types: fmri_emostroop_v1
 resources:
 - resource: PREPROC
 fmatch: swauFMRI.nii.gz
 fdest: swauFMRIa.nii.gz
 - types: Week12
 assessors:
 - name: assr_emostroop_c
 types: fmri_emostroop_v1
 resources:
 - resource: PREPROC
 fmatch: swauFMRI.nii.gz
 fdest: swauFMRIc.nii.gz
outputs:
 - dir: PREPROC
 - dir: 1stLEVEL
command:
 type: singularity_run
 container: EMOSTROOP
 args: BLvsWK12

The assessor will be created under the subject on XNAT, at the same level as a session. The proctype of the assessor will be derived from the filename just like
session-level processors. The XNAT data type of the assessor, or xsiType, will be proc:subjGenProcData (for session-level assessors the type is proc:genprocData).

Assessors in VUIIS XNAT

An assessor is processed on XNAT. All files produced by a script using data from one scan / multiple scans / any other process data will be / need to be upload to an assessor.

The VUIIS XNAT is using two kind of assessors :

	proc:genProcData : the generic assessor type

	fs:fsData : the specific FreeSurfer assessor type that we created (deprecated)

We are using these statuses for the assessor:

	NO_DATA : no data exists on the sessions to be able to run

	NEED_INPUTS : input data has not been created yet for a scan, multiple scans or other assessor; sometimes this means the inputs it needs aren’t present, other times, this means everything is present but the assessor hasn’t built yet

	NEED_TO_RUN : ready to be launched on the cluster (ACCRE). All input data for the process to run exists

	JOB_RUNNING : the assessor is built and the job is running on ACCRE or the job is completed and is waiting to be uploaded

	JOB_FAILED : the job failed on the cluster

	READY_TO_UPLOAD : Job done, waiting for the results to be uploaded to XNAT from the cluster

	UPLOADING : in the process of uploading the resources on XNAT

	READY_TO_COMPLETE : the assessors contains all the files but we still need finish up (this includes getting the walltime and memory used on ACCRE)

	COMPLETE : all finished

There is a QA status that is managed by the project owner. This field defaults to “Needs QA”. Other values can be set as desired. If set to “Rerun”, the assessor will automatically be deleted and rerun.

DAX Command Line Tools

Table of Contents

	List of the Tools

	XnatSetup

	XnatQuery

	XnatCheck

	XnatDownload

	XnatUpload

	XnatReport

	XnatSwitchProcessStatus

	XnatSetup

	XnatProcessUpload

	XnatSubjectUpdate

	RedCapReport

	XnatCheckLogin

	Xnatinfo

	Xnatsessionupdate

	BIDSMapping

	XnatBOND

List of the Tools

Each tool has a help option and some examples on how to use the tools. You can call each tool with no arguments to see the help.

XnatSetup

You can use the Xnatsetup (see below) command tool to setup your computer with the –basic options. It will do what is below automatically, but if you don’t want to do that, it can be setup manually.

This Xnat commands will use two thing :

	install pyxnat and python packages on your computer (Check ‘Get started for Spiders’ on the wiki)

	set your bashrc with the env variable to connect to Xnat with pyxnat :

export XNAT_HOST=http://xnat.vanderbilt.edu/xnat
export XNAT_USER=username
export XNAT_PASS=password
export PATH=/PathToMasimatlab/trunk/xnatspiders/Xnat_tools:$PATH

FYI : you can open the bashrc like :

vim (or nano or any editor you like) ~/.bashrc

and when you are done editing it, use :

. ~/.bashrc

You will after this be able to call the commands directly on your terminal.

One last thing, the Xnatupload will send you updates (errors and warnings) about the directory you are trying to upload on Xnat. If you want to receive this email, you need to set up two variables in your bashrc :

export EMAIL_ADDR=add@gmail.com
export EMAIL_PWS=passwordforthisemail

It will use this email address to send you email. It has to be a gmail address.

Xnatsetup is as you can guess a command tool to set up your computer. It will install the python package needed and ask for the variables that need to be set up. There are different kinds of setup :

	basic to be able to use the XNAT command tools

	advance to run spiders on your computer or ACCRE

	redcap to use the spider to send data to redcap

	cci package setup for ACCRE or if you need XnatUtils

	ACCRE setup

###
XNATSETUP
XnatSetup is a command tool to set up on your computer the variables to use
the tools/spiders.
Developed by the masiLab Vanderbilt University, TN, USA.
Operating system : Linux & Mac OS
Shell : bash
Requirements : python with pip & git
Contact : benjamin.c.yvernault@vanderbilt.edu
No Arguments given
See the help bellow or Use "Xnatquery" -h
###
Usage: Xnatsetup [options]

What is the script doing : Set up your computer to use xnat.
 *Basic installation (--basic) - Needed to use the Xnat command tools or any of
the next installations : install the python package httplib2, lxml, and pyxnat if not
already install & saving your username/host/password for XNAT.
 *Advance installation (--advance) - Needed to run the non-specific spiders :
Set up the Upload Directory, set up masimatlab path for Xnatrun, add the xnat
tools to your PATH, and add Spiders.py in your PYTHONPATH .
 *Redcap installation (--redcap) - Needed to use redcap spiders (send data to
redcap) : Install Pycap / pandas if not install and set up the URL for redcap .
 *API installation (--api) - Needed to use API package to run spiders on ACCRE
via jobs (Contains XnatUtils) : Install API if not install.
 *ACCRE installation (--accre) - Setup the environment to use the
package/spiders/tools on ACCRE.

Options:
 -h, --help show this help message and exit
 --basic Use this options to set up the env variables to use
 the Xnat tools and have the basic set up.
 --advance Use this options to set up the env variables to run
 spiders in general.
 --redcap Use this options to set up the env variables to use
 redcap spiders.
 --api Use this options to set up the env variables to run
 spiders on ACCRE via jobs.
 --Accre Use this options if you are on Accre.
 --NoSudo Use this options if you don't have sudo access and you
 still want to install the package (check -d option).
 -d INSTALLDIR, --installdir=INSTALLDIR
 Use this options to specify a directory where the
 python package need to be install. It works only if
 you use --NoSudo option.
 --tutorial Give you the step for the specific setup you are
 asking.

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatQuery

Xnatquery will show you the tree on xnat. Xnatquery is a tool to query objects on XNAT for each level. You can see which projects you have access to and see the hierarchy of data on your project. It has several options (accessible with -h or –help) :

##
XnatQuery
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Query through XNAT at the level you want.
Examples:
Check the help for examples by running --help
##

--
usage: XnatQuery [-h] [--host HOST] [-u USERNAME] [-p PROJECT] [-s SUBJECT]
 [-e SESSION] [-a ASSESSOR] [-c SCAN] [--all] [--me]

What is the script doing :
 * Query on Xnat at any level.

Examples:
 *Show all the projects you have access to:
 Xnatquery --me
 *Show all projects:
 Xnatquery --all
 *Query a specific level (example scan/assessors for a session):
 Xnatquery -p PID -s 109873 -e 109873
 *Query a specific level with all objects under it :
 Xnatquery -p PID -s 109873 --all

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: env XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT.
 -p PROJECT, --project PROJECT
 project ID on Xnat or 'all' to see all the project.
 -s SUBJECT, --subject SUBJECT
 Subject label on Xnat
 -e SESSION, --experiment SESSION
 Session label on Xnat
 -a ASSESSOR, --assessor ASSESSOR
 Assessor/Process label on XNAT. E.G: VUSTP-x-VUSTP1-x-VUSTP1a-x-FS
 -c SCAN, --scan SCAN Scan ID on Xnat.
 --all Print all the objects on XNAT from the level you are at.
 --me Give the projects ID that you have access.

Extra Examples

	To get information on the project

Xnatquery -p projectID --info

	To get all the subjects in this project

Xnatquery -p projectID

	To get all the experiments in this project

Xnatquery -p projectID -s subject

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatCheck

Xnatcheck is a quick way to check directly on your terminal if there is the resource you just created on all your project. You can check if there is a scan type or an assessor type as well with the options -s or -a. Options available (-h or -help):

##
XnatCheck
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Check XNAT data (subject/session/scan/assessor/resource)
Examples:
Check the help for examples by running --help
##

--
usage: XnatCheck [-h] [--host HOST] [-u USERNAME] [-p PROJECTS]
 [--filters FILTERS [FILTERS ...]]
 [--delimiter DELIMITER_FILTER_RESOURSE] [--csv CSV_FILE]
 [--format FORMAT] [--printfilters] [--printformat]

What is the script doing :
 *Check object on XNAT (subject/session/scan/assessor/resources) specify by the options.

How to write a filter string:
 - for resources filters, the string needs to follow this template:
 variable_name=value--sizeoperatorValue--nbfoperatorValue--fpathsoperatorValue
 By default, it will return the assessor that does have the resource if no other filter specify
 - for other filters, the string needs to follow this template:
 variable_name=Value
 operator can be different than =. Look at the table in --printfilters

Use --printfilters to see the different variables available

Examples:
 *See format variables:
 Xnatcheck --printformat
 *See filter variables:
 Xnatcheck --printfilters
 *Get list of T1,DTI scans that have a resource called NIFTI:
 Xnatcheck -p PID --filters type=T1,DTI assessor_res=NIFTI
 *Get list of fMRIQA assessors that have a resource called PDF:
 Xnatcheck -p PID --filters proctype=fMRIQA assessor_res=PDF
 *Get list of assessors except fMRIQA that have a resource called PDF :
 Xnatcheck -p PID --filters proctype!=fMRIQA assessor_res=PDF
 *Get list of project sessions that do not have a resource called testing:
 Xnatcheck -p PID --filters session_label=VUSTP1a,VUSTP2b,VUSTP3a session_res!=testing
 *Get list of project fMRIQA and VBMQA that used more than 45mb and less than 1hour:
 Xnatcheck -p PID1,PID2 --filters proctype=fMRIQA,VBMQA procstatus=COMPLETE "memused>45mb" "walltimeused<1:00:00" --format assessor_label,procnode,memused,walltimeused

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: env XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT.
 -p PROJECTS, --project PROJECTS
 Project(s) ID on XNAT
 --filters FILTERS [FILTERS ...]
 List of filters separated by a space to apply to the search.
 --delimiter DELIMITER_FILTER_RESOURSE
 Resource filters delimiter. By default: --.
 --csv CSV_FILE File path to save the CSV output.
 --format FORMAT Header for the csv. format: list of variables name comma-separated
 --printfilters Print available filters.
 --printformat Print available format for display.

Extra Examples

	To return all the scans where there is no NIFTI on the project BLSA

Xnatcheck -p BLSA -r NIFTI

	To return all the assessors where there is no PDF on the project BLSA

Xnatcheck -p BLSA -r PDF -l 1

	To return all the subjects/experiments where there is no fMRIQA assessor on the project BLSA

Xnatcheck -p BLSA -a fMRIQA

	To return all the subjects/experiments where there is no fMRIQA assessor on the project BLSA and check for the one that exists if there is a PDF resource

Xnatcheck -p BLSA -a fMRIQA -r PDF

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatDownload

Xnatdownload will download all the resources that you asked for in a directory. Xnatdownload provides bulk download of data from XNAT with specific filters applied. It provides options to narrow your download to only what you need. This tool will generate a folder per project in your -d directory with two files: download_commandLine.txt and download_report.csv with the description of what you downloaded. It has several options (accessible with -h or -help) :

##
XNATDOWNLOAD
#
Developed by the masiLab Vanderbilt University, TN, USA.
If issues, email benjamin.c.yvernault@vanderbilt.edu
Parameters :
No Arguments given
See the help bellow or Use "Xnatdownload" -h
##
usage: Xnatdownload [-h] [--host HOST] [-u USERNAME] [-p PROJECT]
 [-d DIRECTORY] [-D] [--subj SUBJECT] [--sess SESSION]
 [-s SCANTYPE] [-a ASSESSORTYPE] [--WOS WITHOUTS]
 [--WOP WITHOUTA] [--quality QUALITIES] [--status STATUS]
 [--qcstatus QCSTATUS] [-c CSVFILE] [--rs RESOURCESS]
 [--ra RESOURCESA] [--selectionS SELECTIONSCAN]
 [--selectionP SELECTIONASSESSOR] [--overwrite] [--update]
 [--fullRegex] [-o OUTPUTFILE] [-i] [-b BIDS_DIR] [-xt]
 [--bond_dir BOND_DIR]

What is the script doing :
 *Download filtered data from XNAT to your local computer using the different OPTIONS.

Examples:
 *Download all resources for all scans/assessors in a project:
 Xnatdownload -p PID -d /tmp/downloadPID -s all --rs all -a all --ra all
 *Download NIFTI for T1,fMRI:
 Xnatdownload -p PID -d /tmp/downloadPID -s T1,fMRI --rs NIFTI
 *Download only the outlogs for fMRIQA assessors that failed:
 Xnatdownload -p PID -d /tmp/downloadPID -a fMRIQA --status JOB_FAILED --ra OUTLOG
 *Download PDF for assessors that Needs QA:
 Xnatdownload -p PID -d /tmp/downloadPID -a all --qcstatus="Needs QA" --ra OUTLOG
 *Download NIFTI for T1 for some sessions :
 Xnatdownload -p PID -d /tmp/downloadPID --sess 109309,189308 -s all --rs NIFTI
 *Download same data than previous line but overwrite the data:
 Xnatdownload -p PID -d /tmp/downloadPID --sess 109309,189308 -s all --rs NIFTI --overwrite
 *Download data described by a csvfile (follow template) :
 Xnatdownload -d /tmp/downloadPID -c upload_sheet.csv
 *Transform the XnatDownload data in BIDS format for all sessions, scantype and resources:
 Xnatdownload -p PID --sess all -d /tmp/downloadPID -s all --rs all --bids /tmp/BIDS_dataset
 *Transform the XnatDownload data in BIDS format for all sessions, scantype and resources with xnat tag:
 Xnatdownload -p PID --sess all -d /tmp/downloadPID -s all --rs all --bids /tmp/BIDS_dataset -xt
 *Transform the XnatDownload data in BIDS format for all sessions, scantype and resources with xnat tag and perform bond:
 Xnatdownload -p PID --sess all -d /tmp/downloadPID -s all --rs all --bids /tmp/BIDS_dataset -xt --bond /tmp/BOND_dir

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: using $XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT. Default: using $XNAT_USER.
 -p PROJECT, --project PROJECT
 Project(s) ID on Xnat
 -d DIRECTORY, --directory DIRECTORY
 Directory where the data will be download
 -D, --oneDirectory Data will be downloaded in the same directory. No sub-
 directory.
 --subj SUBJECT filter scans/assessors by their subject label. Format:
 a comma separated string (E.G: --subj VUSTP2,VUSTP3).
 --sess SESSION filter scans/assessors by their session label. Format:
 a comma separated string (E.G: --sess VUSTP2b,VUSTP3a)
 -s SCANTYPE, --scantype SCANTYPE
 filter scans by their types (required to download
 scans). Format: a comma separated string (E.G : -s
 T1,MPRAGE,REST). To download all types, set to 'all'.
 -a ASSESSORTYPE, --assessortype ASSESSORTYPE
 filter assessors by their types (required to download
 assessors). Format: a comma separated string (E.G : -a
 fMRIQA,dtiQA_v2,Multi_Atlas). To download all types,
 set to 'all'.
 --WOS WITHOUTS filter scans by their types and removed the one with
 the specified types. Format: a comma separated string
 (E.G : --WOS T1,MPRAGE,REST).
 --WOP WITHOUTA filter assessors by their types and removed the one
 with the specified types. Format: a comma separated
 string (E.G : --WOP fMRIQA,dtiQA).
 --quality QUALITIES filter scans by their quality. Format: a comma
 separated string (E.G: --quality
 usable,questionable,unusable).
 --status STATUS filter assessors by their job status. Format: a comma
 separated string.
 --qcstatus QCSTATUS filter assessors by their quality control status.
 Format: a comma separated string.
 -c CSVFILE, --csvfile CSVFILE
 CSV file with the following header: object_type,projec
 t_id,subject_label,session_type,session_label,as_label
 . object_type must be 'scan' or 'assessor' and
 as_label the scan ID or assessor label.
 --rs RESOURCESS Resources you want to download for scans. E.g : --rs
 NIFTI,PAR,REC.
 --ra RESOURCESA Resources you want to download for assessors. E.g :
 --ra OUTLOG,PDF,PBS.
 --selectionS SELECTIONSCAN
 Download from only one selected scan.By default : no
 selection. E.G : project-x-subject-x-session-x-scan
 --selectionP SELECTIONASSESSOR
 Download from only one selected processor.By default :
 no selection. E.G : assessor_label
 --overwrite Overwrite the previous data downloaded with the same
 command.
 --update Update the files from XNAT that have been downloaded
 with the newest version if there is one (not working
 yet).
 --fullRegex Use full regex for filtering data.
 -o OUTPUTFILE, --output OUTPUTFILE
 Write the display in a file giving to this OPTIONS.
 -i, --ignore Ignore reading of the csv report file
 -b BIDS_DIR, --bids BIDS_DIR
 Directory to store the XNAT to BIDS curated data
 -xt, --xnat_tag Download BIDS data with XNAT subjID and sessID
 --bond_dir BOND_DIR Download the Key groups and Param groups in BIDS data to BOND_DIR

Example

	Downloads in /home/benjamin/temp the resources NIFTI and PDF for all the scan fMRI and the assessor fMRIQA for the project BLSA

Xnatdownload -p BLSA -d /home/benjamin/temp/ -a fMRIQA -s fMRI -r NIFTI,PDF

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatUpload

Xnatupload will create subject/experiment/scan/resources for a project on XNAT and upload the data into the project from a folder. Xnatupload provides bulk upload of data to a project on XNAT. You need to provide a specific CSV file with the following header:

	object_type,project_id,subject_label,session_type,session_label,as_label,as_type,as_description,quality,resource,fpath

where:

	as_label corresponds to assessor or scan label

	as_type corresponds to proctype or scantype

	as_description corresponds to procstatus or series description for the scan

	quality corresponds to qastatus or quality for scan

It should be similar to this (project in the example is CIBS-TEST):

object_type,project_id,subject_label,session_type,session_label,as_label,as_type,as_description,quality,resource,fpath
scan,CIBS-TEST,CIBS-TEST_01,MR,CIBS-TEST_01,401,BRAIN2_3DT1,BRAIN2_3DT1,usable,NIFTI,/Users/<USER>/Downloads/Archive/DICOM_T1W_3D_TFE.nii.gz

Methods

Warning: the project must already exist on XNAT. You can add a new project via the XNAT web GUI. Follow one of the three methods to upload:

	Number 1 : all the files are in one directory but they need to be rename like this projectID-x-subjectID-x-experimentID-x-scanID-x-scantype-x-resourcename.extention. Fastest methode but only one file can be upload in a resource.

	Number 2 : you don’t need to rename all the files but you need to give a specific structure to your directory : folder/subjectID/experimentID/scanID-x-scantype/ResourceID/ and put the resources corresponding in it. E.G : TempDir/BLSA_0000/BLSA_0000_0/scan2-x-fMRI/NIFTI/nifti.nii.gz. It will not be as fast as the first methode but you can upload more than one file to a resources.

	Option -o : There is a third choice. If you want to upload files to Xnat on a scan and you don’t want to create anything, you can use this options -o. It’s for only upload. It’s using something like the first methodes : put all the files into one folder with a special name : projectID-x-subjectID-x-experimentID-x-scanID-x-resourcename.extention for assessor, assessor_label-resourcename.extension for assessor (Reminder : assessor_label = projectID-x-subjectID-x-experimentID-x-scanID-x-process_name or projectID-x-subjectID-x-experimentID-x-processname).

##
XnatUpload
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Print a detailed report from XNAT projects.
Examples:
Check the help for examples by running --help
##
IMPORTANT WARNING FOR ALL USERS ABOUT XNAT:
 session_label needs to be unique for each session.
 Two subjects can NOT have the same session_label
--
usage: XnatUpload [-h] [--host HOST] [-u USERNAME] -c CSV_FILE
 [--sess SESSION_TYPE] [--report] [--force] [--delete]
 [--deleteAll] [--noextract] [--printmodality]
 [-o OUTPUT_FILE] [-b BIDS_DIR] [-p PROJECT]

What is the script doing :
 * Upload data to XNAT following the csv file information.
 csv header:
 object_type,project_id,subject_label,session_type,session_label,
 as_label,as_type,as_description,quality,resource,fpath

IMPORTANT: YOU NEED TO CREATE THE PROJECT ON XNAT BEFORE UPLOADING.

Examples:
 * See Session type:
 Xnatupload --printmodality
 * Simple upload:
 Xnatupload -c upload_sheet.csv
 * Upload everything with a session type:
 Xnatupload -c upload_sheet.csv --sess PET
 * Check the upload:
 Xnatupload -c upload_sheet.csv --report
 * Force upload:
 Xnatupload -c upload_sheet.csv --force
 * Upload with delete resource before uploading:
 Xnatupload -c upload_sheet.csv --delete
 * Upload with delete every resources for the object (SCAN/ASSESSOR) before uploading:
 Xnatupload -c upload_sheet.csv --deleteAll
 * Upload BIDS data to XNAT format for scan
 Xnatupload -b /tmp/bidsDataset -p PID
 * Check BIDS data to XNAT
 Xnatupload -b /tmp/bidsDataset -p PID --report
 * Force upload BIDS data to upload XNAT
 Xnatupload -b /tmp/bidsDataset -p PID --force

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: env XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT.
 -c CSV_FILE, --csv CSV_FILE
 CSV file with the information for uploading data to XNAT. Header: object_type,project_id,subject_label,session_type,session_label,as_label,as_type,as_description,as_quality,resource,fpath
 --sess SESSION_TYPE Session type on Xnat. Use printmodality to see the options.
 --report Print a report to verify inputs.
 --force Force the upload and remove previous resources.
 --delete Delete resource files prior to upload.
 --deleteAll Delete all resources in object prior to upload.
 --noextract Do not extract the zip files on XNAT when uploading a folder.
 --printmodality Display the different modality available on XNAT for a session.
 -o OUTPUT_FILE, --output OUTPUT_FILE
 File path to store the script logs.
 -b BIDS_DIR, --bids BIDS_DIR
 BIDS Directory to convert to XNAT and then upload
 -p PROJECT, --project PROJECT
 Project for BIDS XNAT upload

Extra Examples

	Shows on the terminal what kind of data the command is going to upload and where with method 1

Xnatupload -d /Path/to/directory --report --up1

	Uploads the files in the directory with the first method

Xnatupload -p projectID -d /Path/to/directory -up1 -sess MR

	Uploads the files in the directory with the second method

Xnatupload -p projectID -d /Path/to/directory --up2 --sess CT

	Uploads (only, no creation of subject/exp/scan) all the files from the directory into Xnat even if there is already a resources (options -force)

Xnatupload -d /Path/to/directory -o -T 1 --force

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatReport

Xnatreport will give you a report on one ore more projects. It will show all the subjects/sessions/scans/assessors/resources for the projects chosen. It has several options (accessible with -h or -help) :

##
XnatReport
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Print a detailed report from XNAT projects.
Examples:
Check the help for examples by running --help
##

--
usage: XnatReport [-h] [--host HOST] [-u USERNAME] [-p PROJECTS] [-c CSV_FILE]
 [--format FORMAT] [--printformat]

What is the script doing :
 * Create a report about Xnat projects.

Examples:
 *Report of a project:
 Xnatreport -p PID
 *Report with a specific format:
 Xnatreport -p PID --format object_type,session_id,session_label,age
 *print the format available:
 Xnatreport --printformat
 *Save report in a csv:
 Xnatreport -p PID -c report.csv

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: env XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT.
 -p PROJECTS, --project PROJECTS
 List of project ID on Xnat separate by a coma
 -c CSV_FILE, --csvfile CSV_FILE
 csv fullpath where to save the report.
 --format FORMAT Header for the csv. format: variables name separated by comma.
 --printformat Print available variables names for the option --format.

Extra Examples

	Creates a report for BLSA and CTONS and will print it on the screen/terminal

Xnatreport -p BLSA,CTONS

	Sends the report on BLSA and CTONS to your email address as a csv file. You need to set to variables gmail address and password used to sent the email in your bashrc

Xnatreport -p BLSA,CTONS --csv -e email@email.com

	Writes the report as a “.csv” file that can be open with Excel. If not path specify, /tmp is the place where the report is save. -t will do the same but in a text file

Xnatreport -p BLSA,CTONS --csv

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatSwitchProcessStatus

XnatSwitchProcessStatus is one of the most powerful and used of the Xnat_tools. It allows the user to switch/set the procstatus (job status) for a specific proctype (type of assessor) in a project. XnatSwitchProcessStatus allows the user to change the status of several type of assessors in a project that have a specific type or just for all of them.

##
XnatSwitchProcessStatus
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Change assessor job/quality control status.
Examples:
Check the help for examples by running --help
##

--
usage: XnatSwitchProcessStatus [-h] [--host HOST] [-u USERNAME]
 [--select SELECT] [-x TXT_FILE] [-p PROJECTS]
 [--subj SUBJECTS] [--sess SESSIONS] [-s STATUS]
 [-f FORMER_STATUS] [-t PROCTYPES]
 [-n NEED_INPUTS] [-d] [--qc] [--printstatus]
 [--fullRegex] [--restart] [--rerun] [--init]
 [--rerundiskq]

What is the script doing :
 *Switch/Set the status for assessors on XNAT selected by the proctype.

Examples:
 *See status managed by DAX:
 XnatSwitchProcessStatus --printstatus
 *Set all fMRIQA to a specific status Error for a project:
 XnatSwitchProcessStatus -p PID -s Error -t fMRIQA
 *Set all Multi_Atlas that have the status JOB_FAILED to NEED_TO_RUN to have the processes run again:
 XnatSwitchProcessStatus -p PID -f JOB_FAILED -t Multi_Atlas -s NEED_TO_RUN
 *Set all VBMQA to NEED_TO_RUN for a project and delete resources:
 XnatSwitchProcessStatus -p PID -s NEED_TO_RUN -t VBMQA -d
 *Set all VBMQA to NEED_TO_RUN, delete resources, and set linked assessors fMRI_Preprocess to NEED_INPUTS:
 XnatSwitchProcessStatus -p PID -s NEED_TO_RUN -t VBMQA -d -n fMRI_Preprocess
 *Set all dtiQA_v2 qa status to Passed for a project:
 XnatSwitchProcessStatus -p PID -s Passed -t dtiQA_v2 --qc
 *Set FreeSurfer for a specific project/subject to NEED_INPUTS:
 XnatSwitchProcessStatus -p PID --subj 123 -s NEED_INPUTS -t FreeSurfer

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: env XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT.
 --select SELECT Give the assessor label that you want to change the status.
 -x TXT_FILE, --txtfile TXT_FILE
 File txt. Each line represents the label of the assessor which need to change status.
 -p PROJECTS, --project PROJECTS
 Project ID on XNAT or list of Project ID
 --subj SUBJECTS Change Status for only this subject/list of subjects.
 --sess SESSIONS Change Status for only this session/list of sessions.
 -s STATUS, --status STATUS
 Status you want to set on the Processes. E.G: 'NEED_TO_RUN'
 -f FORMER_STATUS, --formerStatus FORMER_STATUS
 Change assessors with this former status. E.G: 'JOB_FAILED'
 -t PROCTYPES, --type PROCTYPES
 Assessor process type you want the status to changed.
 -n NEED_INPUTS, --Needinputs NEED_INPUTS
 Assessor process type that need to change to NEED_INPUTS because the assessors from -t you changed are inputs to those assessors.
 -d, --deleteR Delete the resources on the assessor.
 --qc Change the quality control status on XNAT.
 --printstatus Print status used by DAX to manage assessors.
 --fullRegex Use full regex for filtering data.
 --restart Restart the assessors by switching the status for all assessors found to NEED_TO_RUN and delete previous resources.
 --rerun Rerun the assessors by switching status to NEED_TO_RUN for assessors that failed and delete previous resources.
 --init Init the assessors by switching status to NEED_INPUTS for assessors that have been set to NO_DATA.
 --rerundiskq Rerun the assessor that have the status JOB_FAILED: switching status to NEED_INPUTS from JOB_FAILED and delete previous resources.

Extra Examples

	Changes the status for dtiQA_v2 and Freesurfer that have a Failed status to NeedToRun in project BLSA

XnatSwitchProcessStatus -p BLSA -f Failed -s NeedToRun -t dtiQA_v2,FreeSurfer

	Changes the status for dtiQA_v2 and Freesurfer that have a Failed status to NeedToRun in project BLSA and it will delete all the resources on the assessor

XnatSwitchProcessStatus -p BLSA -f Failed -s NeedToRun -t dtiQA_v2,FreeSurfer -d

	Changes the status for the specific FreeSurfer assessor in BLSA_0000_00 session to NeedToRun and delete the resources

XnatSwitchProcessStatus --select BLSA-x-BLSA_0000-x-BLSA_0000_00-x-FreeSurfer -s NeedToRun -d

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatProcessUpload

Xnatprocessupload allows you to upload data for an assessor (you can’t do it that with Xnatupload). You only need to give the path to the folder where the data are. If the assessor doesn’t exist, it will create one. You need to organize the data like this :

	One folder per assessor you want to upload, the name of the folder needs to be the name of the assessor (Remember: assessor label = projectID-x-subjectID-x-sessionID-x-(scanID if running on a only a scan)-x-processname)

	Put one folder for each resources you want to upload within the assessor folder with the name folder equal to the resource name.

	Put the file you want to upload in it.

##
XNATPROCESSUPLOAD
#
Developed by the masiLab Vanderbilt University, TN, USA.
If issues, email benjamin.c.yvernault@vanderbilt.edu
Parameters :
No Arguments given
Use "Xnatprocessupload -h" to see the options
##
Usage: Xnatprocessupload [options]
What is the script doing : Upload Data on Xnat from a Directory as an Assessor.

Options:
 -h, --help show this help message and exit
 -d FOLDER_PATH, --directory=FOLDER_PATH
 Directory containing the different assessors folders that you want to upload.
 --force Force the upload.

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatSubjectUpdate

Xnatsubjectupdate changes the last update date on XNAT to nothing. It will make the automatic process (in cci package when it’s setup) to run again on this subject.

##
XNATSUBJECTUPDATE
#
Developed by the masiLab Vanderbilt University, TN, USA.
If issues, email benjamin.c.yvernault@vanderbilt.edu
Parameters :
No Arguments given
See the help bellow or Use "Xnatsubjectupdate" -h
##
Usage: Xnatsubjectupdate [options]
What is the script doing : Query on Xnat at any level.

Options:
 -h, --help show this help message and exit
 -p PROJECT_ID, --project=PROJECT_ID
 One project ID on Xnat.
 -s SUBJECT_LABELS, --subject=SUBJECT_LABELS
 Subject label on Xnat or list of them.

Contact - benjamin.c.yvernault@vanderbilt.edu

RedCapReport

Redcapreport is a powertool to extract data from REDCap. It will download the data and put it into a csv file. You can specify different options to have a precise download.

##
RedCapReport
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Create REDCap report for a redcap project.
Examples:
Check the help for examples by running --help
##

--
usage: RedCapReport [-h] -k KEY [-c CSVFILE] [-x TXTFILE] [-p PROJECT]
 [-s SUBJECT] [-e SESSION] [-a ASSESSOR] [-t PROCTYPE]
 [-f PROCFILE] [-l LIBRARIES] [-F] [-L] [--all]

What is the script doing :
 *Extract data from REDCap as a csv file.

Examples:
 *Save the data in a csv file: Redcapreport -k KEY -c extract_redcap.csv
 *print the libraries name: Redcapreport -k KEY -L
 *print all fields name and label: Redcapreport -k KEY -F
 *Extract values for all record: Redcapreport -k KEY --all
 *Filter for specific project/subject/session/assessor type:
 Redcapreport -k KEY -p PID -s 109387 -e 109387_1,109387_2 -t FS,TRACULA_v1,dtiQA_v2
 *Extract for specific assessor: Redcapreport -k KEY -p PID -a PID-x-109387-x-109387_1-x-FS
 *Extract for specific libraries type: Redcapreport -k KEY -p PID -l library_name
 *Extract only the fields described in the txt file: Redcapreport -k KEY -x fields.txt

optional arguments:
 -h, --help show this help message and exit
 -k KEY, --key KEY API Token for REDCap project.
 -c CSVFILE, --csvfile CSVFILE
 csv file path where the report will be save.
 -x TXTFILE, --txtfile TXTFILE
 txt file path with per line, the name of the variable
 on REDCap you want to extract.
 -p PROJECT, --project PROJECT
 Extract values for processes for the projects chosen.
 E.G: project1,project2
 -s SUBJECT, --subject SUBJECT
 Extract values for processes for the subjects chosen.
 E.G: subject1,subject2
 -e SESSION, --session SESSION
 Extract values for processes for the sessions chosen.
 E.G: session1,session2
 -a ASSESSOR, --assessor ASSESSOR
 Extract values for processors chosen. E.G:
 processor1,processor2
 -t PROCTYPE, --proctype PROCTYPE
 Extract values for processes types chosen. E.G:
 fMRIQA,dtiQA
 -f PROCFILE, --procfile PROCFILE
 file path with each line one processor label. Extract
 values for processes types chosen.
 -l LIBRARIES, --libraries LIBRARIES
 Extract values for only the libraries specify. Check
 the project for the libraries name. Switch spaces by
 '_' and everything lower case. E.G:
 dti_quality_assurance. By default: all libraries
 -F, --fields Print all field names and labels
 -L, --printlib Print all libraries names for the project.
 --all Extract values for all records.

Contact - benjamin.c.yvernault@vanderbilt.edu

XnatCheckLogin

XnatCheckLogin allows the user to check that environment variables are set appropriately. It will let you know in a few seconds if your logins are good or not.

usage: XnatCheckLogin [-h] [--host HOST]
Set and Check the logins for XNAT.
optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT.

Xnatinfo

Xnatinfo is the tool to get fast statistics information on a project (number of subjects/sessions/scans/assessors and the status of the assessors). There is only one way to call Xnatinfo:

##
Xnatinfo
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Display information on a XNAT project.
Examples:
Check the help for examples by running --help
##

--
usage: Xnatinfo [-h] [--host HOST] [-u USERNAME] [-x OUTPUT_FILE] [-f] [-r]
 [--ignoreUnusable] [--ignoreScans]
 project

What is the script doing :
 * Generate a report for a XNAT project displaying scans/assessors
 information.

Examples:
 * See the information for project TEST:
 Xnatinfo TEST

positional arguments:
 project Project ID on XNAT

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: env XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT.
 -x OUTPUT_FILE, --filetxt OUTPUT_FILE
 Path to a txt file to save the report
 -f, --failed Add this flag to print out failed jobs
 -r, --running Add this flag to print out running jobs
 --ignoreUnusable Ignore print statement of unusable scans
 --ignoreScans Ignore print statement of scans

Xnatsessionupdate

Xnatsessionupdate resets the last update date on XNAT on a session. It will force DAX update scripts to update the session. This tool is for advanced users and managers of projects on XNAT.

##
XnatSessionUpdate
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Reset sessions to be seen by the nex dax_update.
Examples:
Check the help for examples by running --help
##

--
usage: XnatSessionUpdate [-h] [--host HOST] [-u USERNAME] -p PROJECTS
 [-s SESSION] [-n] [-x TXT_FILE] [-a]

What is the script doing :
 * Reset sessions last update date to update the sessions during
 the next dax_update.

Examples:
 *Reset all sessions:
 Xnatsessionupdate -p PID --all
 *Reset some sessions :
 Xnatsessionupdate -p PID -s 109374,109348
 *Reset for the sessions that have assessors NEED_INPUTS:
 Xnatsessionupdate -p PID -n

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: env XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT.
 -p PROJECTS, --project PROJECTS
 Projects ID on Xnat.
 -s SESSION, --session SESSION
 Session label on Xnat or list of them.
 -n, --needinputs Change the subject last update date for all the subject with processes that have a job status equal to NEED_INPUTS.
 -x TXT_FILE, --txtfile TXT_FILE
 File txt with at each line the label of the assessor or just the Session label where the Subject date need to be changed. E.G for label: project-x-subject-x-experiment-x-scan-x-process_name.
 -a, --all Change for all sessions.

BIDSMapping

BIDSMapping tool allows the user to create, update or replace rules/mapping at the project level on XNAT. These rules are essential as they entail the link between scan type or series description on XNAT to the BIDS datatype, task type and repetition time. XnatToBids function uses these mapping at the project to transform XNAT data into the BIDS compliant data with BIDS filenames and folder structure.

##
BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Examples:
Check the help for examples by running --help
##

usage: use "BIDSMapping --help" for more information

What is the script doing :
 *Uploads BIDS datatype, tasktype and repitition time mapping to XNAT project level using the different OPTIONS.

Examples:
 *Create a new datatype mapping for scan_type of XNAT scans:
 BIDSMapping -p PID --xnatinfo scan_type --type datatype --create /tmp/projectID_datataype.csv
 *The correct format for /tmp/projectID_datataype.csv
 scan_type,datatype
 Resting State,func
 *Create a new datatype mapping for series_description of XNAT scans:
 BIDSMapping -p PID --xnatinfo series_description --type datatype --create /tmp/projectID_datataype.csv
 *Create a new tasktype mapping for scan_type of XNAT scans:
 BIDSMapping -p PID --xnatinfo scan_type --type tasktype --create /tmp/projectID_tasktype.csv
 *Replace tasktype mapping for scan_type of XNAT scans: (It removes the old mapping and upload the new mapping)
 BIDSMapping -p PID --xnatinfo scan_type --type tasktype --replace /tmp/projectID_tasktype.csv
 *Update tasktype mapping for scan_type of XNAT scans: (This is ONLY add new mapping rules, CANT remove rules use --replace to remove and add mapping rules)
 BIDSMapping -p PID --xnatinfo scan_type --type tasktype --update /tmp/projectID_tasktype.csv
 *Create default datatype mapping for scan_type of XNAT scans: (There is no default for series_description use --create)
 BIDSMapping -p PID --xnatinfo scan_type --type datatype --create_default
 *Download the current mapping on XNAT:
 BIDSMapping -p PID --xnatinfo scan_type --type datatype --download /tmp/download.csv
 *Download the scan_types on project on XNAT:
 BIDSMapping -p PID --template /tmp/scan_type_template.csv

optional arguments:
 -h, --help show this help message and exit
 --host HOST Host for XNAT. Default: using $XNAT_HOST.
 -u USERNAME, --username USERNAME
 Username for XNAT. Default: using $XNAT_USER.
 -o LOGFILE, --logfile LOGFILE
 Write the display/output in a file given to this OPTIONS.
 -p PROJECT, --project PROJECT
 Project to create/update BIDS mapping file
 -t TYPE, --type TYPE The type of mapping either datatype, tasktype or repetition_time_sec
 -x XNATINFO, --xnatinfo XNATINFO
 The type of xnat info to use for mapping either scan_type or series_description
 -c CREATE, --create CREATE
 Create the given BIDS new mapping file at project level. (EG. --create <mappingfile>.csv)
 Default create creates the default mapping at project file. (EG. --create)
 csvfile EG:
 scan_type,datatype
 T1W/3D/TFE,anat
 Resting State,func
 -cd, --create_default
 Default create creates the default mapping at project file. (EG. --create_default)
 -ud UPDATE, --update UPDATE
 Update the existing BIDS mapping file at project level. (EG. --update <mappingfile>.csv)
 This option can only add rules
 -rp REPLACE, --replace REPLACE
 Replace the existing BIDS mapping file at project level. (EG. --replace <mappingfile>.csv)
 This option can remove and add new rules
 -rv REVERT, --revert REVERT
 Revert to an old mapping from a specific date/time. (EG: --revert 10-17-19-21:32:15
 or --revert 10-17-19). Check the LOGFILE at project level for the date
 -d DOWNLOAD, --download DOWNLOAD
 Downloads the current BIDS mapping file (EG: --download <foldername>)
 -tp TEMPLATE, --template TEMPLATE
 Default mapping template (EG: --template <template file>)

For a walkthrough tutorial of BIDSMapping check out https://dax.readthedocs.io/en/latest/BIDS_walkthrough.html
Contact - praitayini.kanakaraj@vanderbilt.edu

XnatBOND

XnatBOND takes in a BIDS directory and detects the Key and Parameter Groups. This tool can be used to Modifying Key and Parameter Group Assignment. For more details on the package used look at https://bids-bond.readthedocs.io/en/latest/readme.html

##
XnatBond
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Generate and alternate key params in BIDS using BOND
Examples:
Check the help for examples by running --help
##

usage: XnatBOND [-h] --bids_dir BIDS_DIR [-b BOND_DIR] [-m keyparam_edited keyparam_files new_keyparam_prefix] [-o LOGFILE]

What is the script doing :
 *Generate the csv files that have the summary of key groups and param groups from the
 bidsdata and modify them in the bids data.

Examples:
 *Generate orginial key and parameter groups:
 XnatBOND --bids_dir BIDS_DIR --bond_dir BOND_DIR
 *Update the key and parameter groups:
 XnatBOND --bids_dir BIDS_DIR --modify_keyparam

optional arguments:
-h, --help show this help message and exit
--bids_dir BIDS_DIR BIDS data directory.
-b BOND_DIR, --bond_dir BOND_DIR
 BOND data directory.
-m keyparam_edited keyparam_files new_keyparam_prefix, --modify_keyparam keyparam_edited keyparam_files new_keyparam_prefix
 Values to modify the keyparam in bids.
-o LOGFILE, --logfile LOGFILE
 Write the display/output in a file given to this OPTIONS.

DAX Executables

Table of Contents

	DAX Packages

	How Does it Work?

	DAX Settings

	How to Write a ProjectSettings.py File

	DAX Executables

	DAX Build

	DAX Update Tasks

	DAX Launch

	DAX Upload

	DAX Manager

DAX Packages

We have been developing a high throughput pipeline processing and quality assurance environment based on Washington University’s XNAT platform. This system has been deployed as the primary data archival platform for all VUIIS studies. This pipeline has been implemented in a python package called Distributed Automation for XNAT (DAX). Data processing occurs on the Vanderbilt Advanced Computing Center for Research and Education (ACCRE). DAX has been developed with a series of settings making the package portable on any batch scripting system. Each customized module is a spider that performs an image processing task using a variety of open source software.

DAX is available on github at https://github.com/VUIIS/dax and be installed with “pip install dax”.

How Does it Work?

DAX consists of three main executables that communicates with an XNAT system to process and archived imaging data. XNAT has an object implemented as a child of a session that is called an Assessor that corresponds to processed data. By reading the database on a project basis, the different executables will generate the assessors, check for inputs, run the scripts on the cluster as a job, check on the status of the jobs, and upload data back to XNAT. DAX will also maintain data on REDCap. DAX uses a settings files to specify various customizations of the DAX installation and to specify which processes each project should run and any customizations to the processes.

DAX Settings

Inside the package DAX, there is a dax_settings.py file. This file contains variables that can be set by the user such as the commands used by your cluster, the different paths (the upload directory, root job, etc…), email settings, or REDCap settings for dax_manager.

By default, the package is set to use the settings used by Vanderbilt University. It’s set for SLURM cluster.

How to Write a ProjectSettings.yaml File

Two of the DAX executables will need a ProjectSettings.py file to run. This file is a python script providing the description of each modules/processors that need to run for a project or a list of projects. You can learn on how to write a ProjectSettings.yaml file here: Writing a settings file.

DAX Executables

The main executables in the DAX package are:

	dax build

	dax update

	dax launch

	dax upload

	dax manager

See image below to understand the role of each executable:

[image: _images/life_cycle_of_dax_task.png]

DAX Build

dax build will build all the projects in your ProjectSettings.yaml file. It will check each session of your project and run the different modules (e.g: converting dicom to nifti, generating preview, extracting physlog, etc…) and generates the assessors from the processors set in the ProjectSettings.yaml file.

DAX Update

dax update handles assessors for all the projects in your ProjectSettings.yaml file. It will get the list of all the assessors that are “open”, meaning with a status from the list below and update each assessors status.

Open assessors status:

	NEED_TO_RUN

	UPLOADING

	JOB_RUNNING

	READY_TO_COMPLETE

	JOB_FAILED

DAX Launch

It will submit jobs to the cluster for each assessors that have the status NEED_TO_RUN.

DAX Upload

Each job on the cluster will not upload data directly to XNAT but copies the data to a temporary folder on the computer. dax upload will read each processed data from this folder and will upload them on XNAT under an assessor that was previously created by dax build.

DAX Manager

dax manager allows users to manage multiple projects from REDCap (https://redcap.vanderbilt.edu). It will automatically generate a ProjectSettings.yaml file from the REDCap database and will run dax build/update/launch/upload from those files.

On the REDCap project, each record corresponds to a project. Each library is a module or a processor that can be enabled and customized by the user.

Manage a Project

Table of Contents

	Check Why an Assessor Failed

	Set/Reset Assessors to Run

	Run an XnatCheck on Your Project

	Reset Sessions to Force DAX to Update Again

	Run dax_update Manually on a Project (Advanced Users)

	Run dax_launch Manually on a Project (Advanced Users)

	Common and Spurious Errors You May Encounter

	Unable to Read Experiments for Project: XXXXXXXX

	Restarting a Job

	Project Settings Files

	Adding Directories Caused by OSError

	Settings Directory is Missing from tmp Folder

	Verifying the Spider is Waiting to get Uploaded to XNAT

Check Why an Assessor Failed

Each assessor has a procstatus. If you look at a session view and specifically at the assessor list, you can see the column Procstatus.png (see below):

[image: _images/assessor_list.png]

An assessor with the status JOB_FAILED means that the script failed to run on the cluster. To understand why, the user can look at the OUTLOG file under the assessor. If the file is not present, you can check the Uploading queue on your gateway running dax in the OUTLOG folder. When you have located the file, you can see the error generated by the script and try to solve them.

Set/Reset Assessors to Run

If you need to set an assessor to run or reset a large number of assessors to run because they failed, you can use XnatSwitchProcessStatus. We are going to reset all the dtiQA_v2 assessors on our test project VUSTP to NEED_TO_RUN because we want them to rerun:

	XnatSwitchProcessStatus -p VUSTP -s NEED_TO_RUN -t dtiQA_v2 -d

-d means that we want to delete the previous resources. In an other example, we want to run again all the fMRIQA that failed because we fixed the problem:

	XnatSwitchProcessStatus -p VUSTP -s NEED_TO_RUN -t fMRIQA -f JOB_FAILED -d

Sometimes, an assessor is used as an input for an other assessor (TRACULA uses FreeSurfer outputs). If you rerun a FreeSurfer for example on the subject number 1, you might want to set the TRACULA to NEED_INPUTS to wait for FreeSurfer to have the valid inputs to rerun as well. To do so, you can use the options -n following by the proctype:

	XnatSwitchProcessStatus -p VUSTP –subj VUSTP1 -s NEED_TO_RUN -t FS -d -n TRACULA_v1

You should be able now to restart all the jobs you want/need on XNAT.

Run an XnatCheck on Your Project

Xnatcheck is useful to get a list of assessors from XNAT that fit specific criteria. For example, you want to get the list of all the assessors that failed to restart, you can use the following command:

	Xnatcheck -p VUSTP –filters procstatus=JOB_FAILED

The result is the following:

##
XNATCHECK
#
Usage:
Check XNAT data (subject/session/scan/assessor/resource)
Parameters :
Project(s) -> VUSTP
Resource Delimiter -> --
filters String -> ['procstatus=JOB_FAILED']
##
===
INFO: Creating your filters from the options.
* regular filter: procstatus = JOB_FAILED

INFO: extracting information from XNAT:
WARNING: extracting information from XNAT for a full project might take some time.
Please be patient.

- VUSTP
INFO: Number of XNAT object found after filters:

| Project ID | Number of Objects |

| VUSTP | 18 |

object_type,project_id,subject_label,session_type,session_label,as_label,as_type,
 as_description,as_quality
assessor,VUSTP,VUSTP1,MR,VUSTP1a,
 VUSTP-x-VUSTP1-x-VUSTP1a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP3,MR,VUSTP3a,
 VUSTP-x-VUSTP3-x-VUSTP3a-x-T1-x-FSL_First,FSL_First,JOB_FAILED,
 Job Pending
assessor,VUSTP,VUSTP3,MR,VUSTP3a,
 VUSTP-x-VUSTP3-x-VUSTP3a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP4,MR,VUSTP4a,
 VUSTP-x-VUSTP4-x-VUSTP4a-x-MPRAGE-x-VBMQA,VBMQA,JOB_FAILED,
 Job Pending
assessor,VUSTP,VUSTP4,MR,VUSTP4a,
 VUSTP-x-VUSTP4-x-VUSTP4a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP5,MR,VUSTP5a,
 VUSTP-x-VUSTP5-x-VUSTP5a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP6,MR,VUSTP6a,
 VUSTP-x-VUSTP6-x-VUSTP6a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP7,MR,VUSTP7a,
 VUSTP-x-VUSTP7-x-VUSTP7a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP8,MR,VUSTP8a,
 VUSTP-x-VUSTP8-x-VUSTP8a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP8,MR,VUSTP8b,
 VUSTP-x-VUSTP8-x-VUSTP8b-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP9,MR,VUSTP9a,
 VUSTP-x-VUSTP9-x-VUSTP9a-x-LST_v1,LST_v1,JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP9,MR,VUSTP9a,
 VUSTP-x-VUSTP9-x-VUSTP9a-x-LST_vDEV0,LST_vDEV0,JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP9,MR,VUSTP9a,
 VUSTP-x-VUSTP9-x-VUSTP9a-x-MPRAGE-x-VBMQA,VBMQA,JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP9,MR,VUSTP9a,
 VUSTP-x-VUSTP9-x-VUSTP9a-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP9,MR,VUSTP9b,
 VUSTP-x-VUSTP9-x-VUSTP9b-x-LST_v1,LST_v1,JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP9,MR,VUSTP9b,
 VUSTP-x-VUSTP9-x-VUSTP9b-x-LST_vDEV0,LST_vDEV0,JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP9,MR,VUSTP9b,
 VUSTP-x-VUSTP9-x-VUSTP9b-x-MPRAGE-x-VBMQA,VBMQA,JOB_FAILED,Job Pending
assessor,VUSTP,VUSTP9,MR,VUSTP9b,
 VUSTP-x-VUSTP9-x-VUSTP9b-x-nonrigid_reg_to_ATLAS,nonrigid_reg_to_ATLAS,
 JOB_FAILED,Job Pending
===

You can then check the different errors for each assessor and restart the assessors using XnatSwitchProcessStatus as we saw earlier. You can also modify the header of the output to have more information (see available header name with -printformat). For example, to see the walltime and memory used as well as the starting date for the jobs that are COMPLETE for the session VUSTP1a:

	Xnatcheck -p VUSTP –filters procstatus=COMPLETE session_label=VUSTP1a –format assessor_label,proctype,procstatus,walltimeused,memused,jobstartdate

The output now for the csv is:

object_type,assessor_label,proctype,procstatus,walltimeused,memused,jobstartdate
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-1001-x-dtiQA_v2,dtiQA_v2,COMPLETE,
 17:02:43,3127140,2015-02-04
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-1001-x-dtiQA_v3,dtiQA_v3,COMPLETE,
 16:43:45,3135972,2015-02-04
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-301-x-FSL_First,FSL_First,COMPLETE,
 00:22:17,1613624,2015-02-04
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-301-x-Multi_Atlas,Multi_Atlas,COMPLETE,
 1-10:40:20,5585220,2015-02-04
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-301-x-VBMQA,VBMQA,COMPLETE,
 00:20:13,1380344,2015-02-19
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-FS,FreeSurfer,COMPLETE, , ,2014-09-22
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-White_Matter_Stamper,White_Matter_Stamper,
 COMPLETE,01:57:14,2254504,2015-02-16
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-dtiQA_Multi,dtiQA_Multi,COMPLETE,
 16:35:51,3109260,2015-02-04
assessor,VUSTP-x-VUSTP1-x-VUSTP1a-x-intra_sess_reg,intra_sess_reg,COMPLETE,
 00:03:34,318328,2015-02-04

Run dax_update Manually on a Project (Advanced Users)

You can run manually dax_update on a project if you want to update directly a session and not wait for the next time it will run. To do so, you will need to use this command line:

	dax_update ProjectSettings.yaml –project PID –sessions S_ID1,S_ID2

Run dax_launch Manually on a Project (Advanced Users)

You can run manually a dax_launch on a project if you want to submit jobs (assessors with the status NEED_TO_RUN) to the cluster and not wait for the next time it automatically runs. To do so, you will need to use this command line:

	dax_launch ProjectSettings.py –project PID –sessions S_ID1,S_ID2

Common and Spurious Errors You May Encounter

PyXNAT is still a work in progress. As such, you may encounter errors that make little to no sense. A common one that you may get is this:

DatabaseError:

Unable to Read Experiments for Project: XXXXXXXX

You can get technical details here. Please continue your visit at our home page. Where XXXXXXX will be your XNAT Project ID (like VUSTP). Chances are likely that users don’t have access to your project. It’s a quick fix.

Restarting a Job

Jobs can be restarted using XnatSwitchProcessStatus:

	XnatSwitchProcessStatus -s NEED_INPUTS -d –select

Note that you can also switch the process status to NEED_INPUTS in the GUI but the associated data is NOT deleted. Thus, the preferred way is to use XnatSwitchProcessStatus.

Project Settings Files

The dax_project_settings need to specify an attribute change in the processor variables from the project_settings file. Consider the yaml script from the snapshot. To change scan types in a project settings file, we do:

- name: multi_atlas_v3_0_0_VUIIS_ABCD
 filepath: Multi_Atlas_v3.0.0_processor.yaml
 arguments:
 inputs.xnat.scans.scan_t1.types: "ABCD_T1W3D"

To change the attributes from the “resources” section from the processor, the arguments would be passed thus:

	inputs.xnat.scans.resource.t1_file_fmatch:”*.nii.gz”

and not as

	inputs.xnat.scans.resource.NIFTI.fmatch

Adding Directories Caused by OSError (only relevant to LDAX)

[Errno 2] No such file or directory from CRITICAL messages in past 24 hours email

Usually check /scratch/$USER/Modules_tmp, which is based on the project name, not the file name. For instance, this ginko file may have something like the following:

	OSError: [Errno 2] No such file or directory: ‘/scratch/vuiisccidev/Modules_tmp/MSSeg2016/MSSeg2016_preview_nifti_ginko_settings’

	The MSSeg2016 and MSSeg2016/MSSeg2016_preview_nifti_ginko_settings directories would need to be created

Settings Directory is Missing from tmp Folder (only relevant to LDAX)

We need to check REDCap. Settings files should not be in the /tmp/ folder. Normally, they would be somewhere like:

'/scratch/vuiisccidev/Modules_tmp/MSSeg2016/MSSeg2016_preview_nifti_ginko_settings'

Verifying the Spider is Waiting to get Uploaded to XNAT

	The upload queue is different from the ACCRE queue

	The ACCRE cluster is not involved in the upload process

	Upload happens from the following directory:

/scratch/$USER/Spider_upload_dir

BIDSMapping: Walkthrough Tutorial

Introduction

This is a tutorial for using BIDSMapping tool, a DAX command line tool (https://github.com/VUIIS/dax). The BIDSMapping tool allows the user to create, update or replace rules/mapping at the project level on XNAT. For using BIDSMapping tool you require

	the lastest verion of DAX installed. Please check https://dax.readthedocs.io/en/latest/installing_dax_in_a_virtual_environment.html to install DAX in a virtual environment.

	A project on XNAT with imaging data.

	A dcm2niix module turned on for the project. Preferred if the dcm2niix_bids module is turned on for the project. The dcm2niix_bids will add the required json sidecar. However, the BIDSMapping tool is capable of adding the json sidecar when missing.

Table of Contents

	Step 1 Mapping Datatype and Scans

	Step 2 Upload Datatype Mapping to XNAT

	Step 3 Check Project Level File Manager

	Step 4 Mapping Tasktype and Scans

	Step 5 Upload Tasktype Mapping to XNAT

	Step 6 Mapping Repetition Time and Scans

	Step 7 Upload Repetition Time Mapping to XNAT

	Step 8 Check Project Level File Manager

	Step 9 Mapping Perfusion Imaging Type

	Step 10 Upload Perfusion Type to XNAT

	Step 11 Check Project Level File Manager

	Additional Useful BIDSMapping Tool Options

	Step 12 Correct Old Mapping

	Step 13 Replace Existing Mapping

	Step 14 Check Corrected LOGFILE

	Step 15 Add New Mapping

	Step 16 Update Existing Mapping

	Step 17 Check Updated LOGFILE

Step 1 Mapping Datatype and Scans

You need to create a mapping for BIDS datatype and scans on XNAT. First, create the CSV file of the mapping that you would like to upload to XNAT.

Open a CSV file

(dax) $ vim (or nano or any editor you like) datatype.csv

Type the series_description and datatype you want to map

series_description,datatype
T1,anat
gonogo1,func
gonogo2,func
cap1,func
cap2,func
mid1,func
mid2,func
mid3,func

Please note, instead of scan_type in column 1 header series_description can also be used. Make sure the scan_type or series_description is from the scan on XNAT. Image below shows where the information can be found on XNAT

[image: _images/Step1.1.PNG]

Datatype column correspond to the BIDS datatype folder (https://bids.neuroimaging.io/) for the scan to be in. BIDS datatype folder is either
- anat (structural imaging such as T1,T2,etc.),
- func (task based and resting state functional MRI),
- fmap (field inhomogeneity mapping data such as fieldmaps) or
- dwi (diffusion weighted imaging).
For more information checkout page 4 and 8 in https://www.biorxiv.org/content/biorxiv/suppl/2016/05/12/034561.DC4/034561-1.pdf

Step 2 Upload Datatype Mapping to XNAT

This step allows the user to upload datatype mapping rules to XNAT. These mapping rules are then later used by XnatToBids function to organise the scan from XNAT in the respective BIDS datatype folder.
Upload the CSV file (from Step 1) with the mapping rules to XNAT project level using BIDSMapping –create. If scan_type is used as column 1 header in Step 1, use –xnatinfo scan_type option.

(dax) $ BIDSMapping --project ZALD_TTS --create datatype.csv --type datatype --xnatinfo series_description

##
BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> datatype
Create mapping with -> datatype.csv
##

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:
The info used from XNAT is series_description
CSV mapping format is good
date 16-06-20-20:05:56
CREATED: New mapping file 06-16-20-20:05:56_datatype.json is uploaded

Step 3 Check Project Level File Manager

Check Manage Files on XNAT project level. There will be two Resources created; one for XNAT type and the other for datatype mapping. XNAT type will have text file with either scan_type or series_description in it. Datatype mapping will have a .json file of the mapping and a LOGFILE.txt with the logging of rules added and deleted.

[image: _images/Step3.1.PNG]

Steps 4 through 8 are ONLY FOR FUNCTIONAL SCANS

Step 4 Mapping Tasktype and Scans

For functional scans, tasktype mapping is necessary. These mapping rules are to map the scan in XNAT to the task. The task refers to the task performed by the subject during the MRI acquisition (For example: rest for resting state). The task could be any activity. The task is required for BIDS filenaming. For more information check out page 11 in https://www.biorxiv.org/content/biorxiv/suppl/2016/05/12/034561.DC4/034561-1.pdf

Similar to Step 1, create tasktype CSV mapping.

(dax) $ vim (or nano or any editor you like) tasktype.csv

series_description,tasktype
gonogo1,gonogo
gonogo2,gonogo
cap1,cap1
cap2,cap2
mid1,mid1
mid2,mid2
mid3,mid3

Step 5 Upload Tasktype Mapping to XNAT

This step allows the user to upload tasktype mapping rules to XNAT. The XnatToBids in DAX uses this tasktype mapping to name the funcational scans in the BIDS folder. If there is no tasktype mapping the BIDS conversion will fail for functional scans.

Similar to Step 2, upload the Step 4 CSV mapping to XNAT using BIDMapping tool.

(dax) $ BIDSMapping --project ZALD_TTS --create tasktype.csv --type tasktype --xnatinfo series_description

##
BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> tasktype
Create mapping with -> tasktype.csv
##

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:
The info used from XNAT is series_description
CSV mapping format is good
date 16-06-20-20:12:12
CREATED: New mapping file 06-16-20-20:12:12_tasktype.json is uploaded

Step 6 Upload Repetition Time Mapping to XNAT

For functional scan, repetition time (TR) CSV mapping is necessary. This is because there could be some error in the TR found in the NIFTI header or in the JSON sidecar. In order to get the correct TR, we require the user to upload TR and XNAT scan mapping.

(dax) $ vim (or nano or any editor you like) repetition_time.csv

series_description,repetition_time_sec
gonogo1,0.862
gonogo2,0.862

Step 7 Upload Repetition Time Mapping to XNAT

This step allows the user to upload TR mapping rules to XNAT. TR value is vital during processing. If there is no repetition time mapping the BIDS conversion will fail for functional scans.

Upload the above Step 6 mapping to XNAT using the BIDSMapping tool

(dax) $ BIDSMapping --project ZALD_TTS --create repetition_time.csv --type repetition_time_sec --xnatinfo series_description

##
BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> repetition_time_sec
Create mapping with -> repetition_time.csv
##

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:
The info used from XNAT is series_description
CSV mapping format is good
date 16-06-20-20:15:50
CREATED: New mapping file 06-16-20-20:15:50_repetition_time_sec.json is uploaded

Step 8 Check Project Level File Manager

Check Manage Files on XNAT project level. There should be two more BIDS Resources created. One for TR mapping and another for tasktype mapping.

[image: _images/Step8.1.PNG]

Step 9 Mapping Perfusion Imaging Type

For perfusion imaging, you need to create a mapping for BIDS perfusion type on XNAT. First, create the CSV file of the mapping that you would like to upload to XNAT.

Open a CSV file

(dax) $ vim (or nano or any editor you like) asltype.csv

Type the series_description and asltype you want to map

series_description,asltype
ASL,asl
pCASL,asl
ASL_m0,m0scan
pCASL_M0,m0scan

ASLtype column correspond to the required BIDS naming structure for perfusion imaging type (https://bids.neuroimaging.io/). BIDS datatype folder is either
- asl (Perfusion imaging scan such as ASL,CASL,pCASL,pASL,etc.),
- m0scan (Reference scan for blood flow calculation. If included in asl image, do not map.),

For more information check out https://docs.google.com/document/d/15tnn5F10KpgHypaQJNNGiNKsni9035GtDqJzWqkkP6c

Step 10 Upload Perfusion Type to XNAT

This step allows the user to upload asltype mapping rules to XNAT. If there is no asltype mapping the BIDS conversion will fail for perfusion scans.

Upload the above Step 9 mapping to XNAT using the BIDSMapping tool

(dax) $ BIDSMapping --project ZALD_TTS --create asltype.csv --type asltype --xnatinfo series_description

##
BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> EmotionBrain
XNAT mapping type -> series_description
BIDS mapping type -> asltype
Create mapping with -> asltype.csv
##

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:
The info used from XNAT is series_description
CSV mapping format is good
date 16-06-20-20:15:50
CREATED: New mapping file 06-16-20-20:15:50_asltype.json is uploaded

Step 11 Check Project Level File Manager

Check Manage Files on XNAT project level. There should be one more BIDS Resource created for asltype mapping.

[image: _images/Step11.1.PNG]

Additional Useful BIDSMapping Tool Options

There are additional options such as –replace and –update

	The user can use –replace option to remove existing rules and add new rules. This is useful when the user made a mistake in creating the rules and the rules need to be deleted and replaced by new ones. Please note, the steps 9-11 can be followed for using the option –replace in the BIDSMapping tool.

	The user can use –update option to add new mapping rules to the existing mapping at the project level. This is useful when the user added new scans with new scan types to a project and would like to add mapping rules for these scan types. Please note, the steps 12-14 can be followed for using the option –update in the BIDSMapping tool.

Step 12 Correct Old Mapping

To replace a mapping at project level, create the new CSV mapping. Here, we are replacing repetition_time mapping.

(dax) $ vim (or nano or any editor you like) correct_repetition_time.csv

series_description,repetition_time_sec
gonogo1,2
gonogo2,2

Step 13 Replace Existing Mapping

Use option –replace in the BIDSMapping tool. –replace removes the old mapping rules and adds new ones.

(dax) $ BIDSMapping --project ZALD_TTS --replace correct_repetition_time.csv --type repetition_time_sec --xnatinfo series_description

##
BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> repetition_time_sec
Create mapping with -> correct_repetition_time.csv
##

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:
The info used from XNAT is series_description
CSV mapping format is good
UPDATED: uploaded mapping file 06-16-20-20:25:47_repetition_time_sec.json

Step 14 Check Corrected LOGFILE

Check the LOGFILE.txt or json mapping at the XNAT project level under the repetition time Resources.

[image: _images/Step14.1.PNG]

Step 15 Add New Mapping

To update a mapping at project level, create the new CSV mapping. Here, we are updating repetition_time mapping.

(dax) $ vim (or nano or any editor you like) add_new_repetition_time.csv

series_description,repetition_time_sec
cap1,2
cap2,2
mid1,2
mid2,2
mid3,2

Step 16 Update Existing Mapping

Use option –update in the BIDSMapping tool. –update add the new mapping rules to the existing mapping rules.

(dax) $ BIDSMapping --project ZALD_TTS --update add_new_repetition_time.csv --type repetition_time_sec --xnatinfo series_description

##
BIDSMAPPING
#
Developed by the MASI Lab Vanderbilt University, TN, USA.
If issues, please start a thread here:
https://groups.google.com/forum/#!forum/vuiis-cci
Usage:
Upload rules/mapping to Project level on XNAT.
Parameters:
Project ID -> ZALD_TTS
XNAT mapping type -> series_description
BIDS mapping type -> repetition_time_sec
Create mapping with -> add_new_repetition_time.csv
##

INFO: connection to xnat <http://129.59.135.143:8080/xnat>:
The info used from XNAT is series_description
CSV mapping format is good
UPDATED: uploaded mapping file 06-23-20-16:36:36_repetition_time_sec.json

Step 17 Check Updated LOGFILE

Check the LOGFILE.txt or json mapping at the XNAT project level under the repetition time Resources.

[image: _images/Step17.1.PNG]

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dax	

 	
 	
 dax.bin	

 	
 	
 dax.log	

 	
 	
 dax.processors	

 	
 	
 dax.task	

 	
 	
 dax.XnatUtils	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | X

A

 	
 	add_file() (dax.XnatUtils.SpiderProcessHandler method)

 	add_folder() (dax.XnatUtils.SpiderProcessHandler method)

 	add_pdf() (dax.XnatUtils.SpiderProcessHandler method)

 	add_snapshot() (dax.XnatUtils.SpiderProcessHandler method)

 	
 	AssessorHandler (class in dax.XnatUtils)

 	assessors() (dax.XnatUtils.CachedImageSession method)

 	authenticate() (dax.XnatUtils.InterfaceTemp method)

 	AutoProcessor (class in dax.processors)

B

 	
 	batch_path() (dax.task.ClusterTask method)

 	(dax.task.XnatTask method)

 	build() (in module dax.bin)

 	build_cmds() (dax.processors.Processor method)

 	
 	build_commands() (dax.task.ClusterTask method)

 	(dax.task.XnatTask method)

 	build_task() (dax.task.ClusterTask method)

 	(dax.task.XnatTask method)

C

 	
 	CachedImageAssessor (class in dax.XnatUtils)

 	CachedImageScan (class in dax.XnatUtils)

 	CachedImageSession (class in dax.XnatUtils)

 	CachedResource (class in dax.XnatUtils)

 	check_date() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	check_default_keys() (in module dax.bin)

 	check_job_usage() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	
 	check_running() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	clean() (dax.XnatUtils.SpiderProcessHandler method)

 	ClusterTask (class in dax.task)

 	commands() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	connect() (dax.XnatUtils.InterfaceTemp method)

D

 	
 	
 dax

 	module

 	
 dax.bin

 	module

 	
 dax.log

 	module

 	
 dax.processors

 	module

 	
 	
 dax.task

 	module

 	
 dax.XnatUtils

 	module

 	default_settings_spider() (dax.processors.Processor method)

 	disconnect() (dax.XnatUtils.InterfaceTemp method)

 	done() (dax.XnatUtils.SpiderProcessHandler method)

F

 	
 	file_exists() (dax.XnatUtils.SpiderProcessHandler method)

 	
 	folder_exists() (dax.XnatUtils.SpiderProcessHandler method)

 	full_object() (dax.XnatUtils.CachedImageSession method)

G

 	
 	get() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	(dax.XnatUtils.CachedResource method)

 	get_assessor_input_types() (dax.processors.AutoProcessor method)

 	(dax.processors.Processor method)

 	get_assessor_out_resources() (dax.XnatUtils.InterfaceTemp method)

 	get_assessor_path() (dax.XnatUtils.InterfaceTemp method)

 	get_assessor_resource_path() (dax.XnatUtils.InterfaceTemp method)

 	get_assessors() (dax.XnatUtils.InterfaceTemp method)

 	get_cmds() (dax.processors.AutoProcessor method)

 	get_createdate() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_experiment_path() (dax.XnatUtils.InterfaceTemp method)

 	get_in_resources() (dax.XnatUtils.CachedImageAssessor method)

 	get_job_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	get_job_usage() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_jobid() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_jobnode() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_jobstartdate() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_memused() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_out_resources() (dax.XnatUtils.CachedImageAssessor method)

 	get_processor_name() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_processor_version() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	
 	get_proctype() (dax.processors.AutoProcessor method)

 	(dax.processors.Processor method)

 	(dax.XnatUtils.AssessorHandler method)

 	get_project_assessors() (dax.XnatUtils.InterfaceTemp method)

 	get_project_id() (dax.XnatUtils.AssessorHandler method)

 	get_project_path() (dax.XnatUtils.InterfaceTemp method)

 	get_project_scans() (dax.XnatUtils.InterfaceTemp method)

 	get_qcstatus() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_resources() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	(dax.XnatUtils.InterfaceTemp method)

 	get_scan_id() (dax.XnatUtils.AssessorHandler method)

 	get_scan_path() (dax.XnatUtils.InterfaceTemp method)

 	get_scan_resource_path() (dax.XnatUtils.InterfaceTemp method)

 	get_scan_resources() (dax.XnatUtils.InterfaceTemp method)

 	get_scans() (dax.XnatUtils.InterfaceTemp method)

 	get_session_label() (dax.XnatUtils.AssessorHandler method)

 	get_session_resources() (dax.XnatUtils.InterfaceTemp method)

 	get_sessions() (dax.XnatUtils.InterfaceTemp method)

 	get_sessions_minimal() (dax.XnatUtils.InterfaceTemp method)

 	get_sgp_assessor_path() (dax.XnatUtils.InterfaceTemp method)

 	get_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_statuses() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_subject_label() (dax.XnatUtils.AssessorHandler method)

 	get_subject_path() (dax.XnatUtils.InterfaceTemp method)

 	get_subject_resources() (dax.XnatUtils.InterfaceTemp method)

 	get_subjects() (dax.XnatUtils.InterfaceTemp method)

 	get_walltime() (dax.task.ClusterTask method)

 	(dax.task.Task method)

H

 	
 	has_shared_project() (dax.XnatUtils.CachedImageSession method)

I

 	
 	in_resources() (dax.XnatUtils.CachedImageAssessor method)

 	info() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	(dax.XnatUtils.CachedResource method)

 	
 	InterfaceTemp (class in dax.XnatUtils)

 	is_open() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	is_valid() (dax.XnatUtils.AssessorHandler method)

L

 	
 	label() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	(dax.XnatUtils.CachedResource method)

 	launch() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	
 	launch_jobs() (in module dax.bin)

 	list_project_assessor_types() (dax.XnatUtils.InterfaceTemp method)

 	list_project_assessors() (dax.XnatUtils.InterfaceTemp method)

 	load_from_file() (in module dax.bin)

M

 	
 	
 module

 	dax

 	dax.bin

 	dax.log

 	dax.processors

 	dax.task

 	dax.XnatUtils

O

 	
 	out_resources() (dax.XnatUtils.CachedImageAssessor method)

 	outlog_path() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

P

 	
 	parent() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedResource method)

 	parse_session() (dax.processors.AutoProcessor method)

 	pbs_path() (dax.task.Task method)

 	
 	print_copying_statement() (dax.XnatUtils.SpiderProcessHandler method)

 	print_err() (dax.XnatUtils.SpiderProcessHandler method)

 	print_msg() (dax.XnatUtils.SpiderProcessHandler method)

 	Processor (class in dax.processors)

 	processor_spec_path() (dax.task.ClusterTask method)

 	(dax.task.XnatTask method)

R

 	
 	raise_yaml_error_if_no_key() (in module dax.bin)

 	read_yaml_settings() (in module dax.bin)

 	ready_flag_exists() (dax.task.Task method)

 	
 	reproc_processing() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	resources() (dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

S

 	
 	scans() (dax.XnatUtils.CachedImageSession method)

 	select_assessor() (dax.XnatUtils.AssessorHandler method)

 	(dax.XnatUtils.InterfaceTemp method)

 	select_assessor_resource() (dax.XnatUtils.InterfaceTemp method)

 	select_experiment() (dax.XnatUtils.InterfaceTemp method)

 	select_project() (dax.XnatUtils.InterfaceTemp method)

 	select_scan() (dax.XnatUtils.InterfaceTemp method)

 	select_scan_resource() (dax.XnatUtils.InterfaceTemp method)

 	select_session() (dax.XnatUtils.InterfaceTemp method)

 	select_sgp_assessor() (dax.XnatUtils.InterfaceTemp method)

 	select_subject() (dax.XnatUtils.InterfaceTemp method)

 	session() (dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	set_assessor_status() (dax.XnatUtils.SpiderProcessHandler method)

 	set_createdate() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_createdate_today() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_error() (dax.XnatUtils.SpiderProcessHandler method)

 	set_jobid() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_jobnode() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_jobstartdate() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	
 	set_jobstartdate_today() (dax.task.Task method)

 	set_launch() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	set_logger() (in module dax.bin)

 	set_memused() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_proc_and_qc_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_qcstatus() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_spider_settings() (dax.processors.Processor method)

 	set_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_walltime() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	setup_critical_logger() (in module dax.log)

 	setup_debug_logger() (in module dax.log)

 	setup_error_logger() (in module dax.log)

 	setup_info_logger() (in module dax.log)

 	setup_warning_logger() (in module dax.log)

 	should_run() (dax.processors.Processor method)

 	SpiderProcessHandler (class in dax.XnatUtils)

T

 	
 	Task (class in dax.task)

U

 	
 	undo_processing() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(in module dax.bin)

 	update_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	
 	update_tasks() (in module dax.bin)

 	upload_outlog_dir() (dax.task.ClusterTask method)

 	upload_pbs_dir() (dax.task.ClusterTask method)

X

 	
 	XnatTask (class in dax.task)

Requirements for DAX in the ACCRE Environment

Table of Contents

	Required Modules

Required Modules

When running dax on ACCRE, there are some required modules that need to be loaded. They can be loaded with the following:

module load GCCcore/.10.2.0 git/2.28.0-nodocs Python/3.8.6 pbzip2/1.1.13

Tutorials

XnatUtils

Table of Contents

	Conventions

	XNAT Naming Convention

	How to name a resource on XNAT

	Assessor Label

	Interface

	Pyxnat Objects

	Classes

	InterfaceTemp

	AssessorHandler

	SpiderProcessHandler

	Cached Classes

	Methods

	Looping through XNAT database

	Select Pyxnat Objects

	Download from XNAT

	Upload to XNAT

	Methods for Processors using cached classes

	Other Methods

Conventions

XNAT Naming Convention

XNAT has four levels:

	project

	subject

	experiment

	scan/assessor

An experiment is identical to say a session. Most of the tutorial present on this wiki will use the word “session” for an experiment on XNAT. Each XNAT level can possess a “resource”. It represents a folder on XNAT where it stores the data. Any data on XNAT will be stored in a resource. You can create resources on a project, on a subject, on a session, on a scan or on an assessor.

How to name a resource on XNAT

XNAT doesn’t require the user to follow rules on naming the resources except the same rule than apply to any computer about naming folder.

A naming convention that dax tend to use/require is:

	For scan:

	dicom files for a scan are stored in a resource called “DICOM”

	nifty files for a scan are stored in a resource called “NIFTI”

	bval and bvec for a diffusion scan are stored in two different resources called “BVAL” & “BVEC

	snapshots of the scan are stored in a resource called “SNAPSHOTS”

	For assessor:

	PDF for an assessor are stored in a resource called “PDF”

	snapshots of the assessor’s pdf are stored in a resource called “SNAPSHOTS”

	pbs file submit to the cluster for an assessor are stored in a resource called “PBS”

	outlogs of the assessor job are stored in a resource called “OUTLOG”

Assessor Label

An assessor is define in XNAT as an object representing the processed data for a session. dax is using a specific naming convention for the label associated to an assessor. It needs to follow the following pattern:

	assessor on a session: project-x-subject-x-session-x-proctype

	ADNI-x-12931-x-MR_Session12-x-Tracula_v1

	assessor on a scan: project-x-subject-x-session-x-scan-x-proctype

	DNI-x-12931-x-MR_Session12-x-301-x-fMRIQA_v2_test

Interface

Interface represents the connection between your python script and the XNAT database. You will open an interface every time you want to download or upload data to the database. To create this interface, you need to do:

from dax import XnatUtils

host = "xnat-server"
user = "user"
pwd = "XXXXX"
xnat = XnatUtils.get_interface(host, user, pwd)

Typing your host, user, and password for every connection you open will be time consuming and can expose your login information. You can set the following environment variables to avoid giving those information:

	XNAT_HOST

	XNAT_USER

	XNAT_PASS

When this is set, you can call the method like this:

xnat = XnatUtils.get_interface()

Warning: when you create an interface, don’t forget to close it at the end using disconnect() (see below in methods). E.G:

xnat.disconnect()

We will call intf or xnat the object returned by get_interface() .

Pyxnat Objects

Each level on XNAT corresponds to a pyxnat’s object that are linked. You can access each object by selecting them using either the label or the ID in the right URI. For example, let’s access the subject for ADNI project named “1234”:

from dax import XnatUtils

xnat = XnatUtils.get_interface()
project = "ADNI"
subject = "1234"
uri = "/project/"+project+"/subject/"+subject
subject_obj = xnat.select(uri)
if subject_obj.exists():
 print "Subject exists"

The uri needs to follow the pattern for each level:

	project: “/project/{project}”

	subject: “/project/{project}/subject/{subject}”

	session: “/project/{project}/subject/{subject}/experiment/{session}”

	scan: “/project/{project}/subject/{subject}/experiment/{session}/scan/{scan}”

	assessor: “/project/{project}/subject/{subject}/experiment/{session}/assessor/{assessor}”

Resource in XNAT language mean the folder in each object that holds data. You can have a resource at each level. To do so, you need to add the following path at the end of the previous uri:

	resource: /resource/{resource}

	for assessor: /out/resource/{resource}

You can also select object directly from a previous object. For example, in our previous example, if we select the session for the subject 1234 in ADNI from the subject_obj:

session_label = "MR_session1"
session_obj = subject_obj.select(session_label)
if session_obj.exists():
 print "Session exists"

Classes

InterfaceTemp

InterfaceTemp is a class that extends the functionality of Interface from pyxnat to have a temporary cache that is removed when disconnect() is called.

You don’t need to call this class. It’s already integrated to the get_interface() method (see below).

AssessorHandler

AssessorHandler(label) is a class to handle assessor label string. You can create an object by giving the label of your assessor. E.G:

from dax import XnatUtils

label = "project-x-subject-x-session-x-(scan-x-)proctype
ah = XnatUtils.AssessorHandler(label)

This class offers different methods such as getters for each object, is_valid method, and a select_assessor. All the examples below will be using those lines as a start.

See below for each of those methods:

	is_valid

	is_valid(self) returns a boolean variable to define if the label given to the class is valid or not with dax conventions for assessor (see label variable above).

	getters

	getters will allow you to access each element of your assessor label. The different variables available are listed below:

	project_id

	subject_label

	session_label

	scan_id (if assessor on a scan)

	proctype

To call the methods, you need to do get_ELEMENT() and replace ELEMENT with one of the variables above. E.G:

session_label = ah.get_session_label()

	select_assessor

	select_assessor(self, intf) will return the XNAT object representing your assessor. You can then use methods from XnatUtils or pyxnat to interact with the assessor. intf is the variable corresponding to the pyxnat interface. E.G:

#use the lines above
host = "xnat-server.XXXXX"
user = "XXXXX"
pwd = "XXXXX"
xnat = XnatUtils.get_interface(host, user, pwd)

assessor_obj = ah.select_assessor(xnat)

SpiderProcessHandler

SpiderProcessHandler(script_name, suffix, project, subject, experiment, scan=None) is a class to handle the results at the end of any spiders. Instead of having each user writing it’s own code and fixing issues in each spider, we created a main class to handle the copy of outputs.

The class will create a folder named after the label of the assessor in the dax upload queue folder and can then add the different resources that need to be uploaded to XNAT.

The inputs for the class are:

	script_name: name of the script you are running. You can get that by using in python the command: sys.argv[0]

	suffix: suffix to add to the proctype for the assessor label. E.g: test for fMRIQA –> fMRIQA_v1_test

	project: project id on XNAT

	subject: subject label on XNAT (use the label and not the ID)

	experiment: session label on XNAT (use the label and not the ID)

	scan: scan ID on XNAT (need to be specify only if the spider is running on a scan)

To create a SpiderProcessHandler, here is an example:

from dax import XnatUtils

end_spider = XnatUtils.SpiderProcessHandler(sys.argv[0], "test", "Project1", "subject1", "session1")

See below for the methods useful for this class.

WARNING: if you use the spider class build in dax, you don’t need to worry about this class.

	add_pdf

	add_pdf(filepath) will copy the file define by filepath to the upload queue folder for dax.

	end_spider.add_pdf(“/Users/dax/Downloads/report.pdf”)

	add_snapshots

	add_snapshots(filepath) will copy the file define by filepath to the upload queue folder for dax.

	end_spider.add_snapshots(“/Users/dax/Downloads/snapshot.png”)

	add_file

	add_file(filepath, resource) will copy the file define by filepath to the upload queue folder for dax. resource defines the name of the folder/resource on XNAT where the filepath will be stored.

	end_spider.add_file(“/Users/dax/Downloads/stats.txt”, “Metrics”)

	add_folder

	add_folder(folderpath, resource=None) will copy the folder define by folderpath to the upload queue folder for dax. resource defines the name of the folder/resource on XNAT where all the files in folderpath will be stored. If resource is not define, it will use the name of the folder.

	end_spider.add_folder(“/Users/dax/Downloads/STATS/”)

	end_spider.add_folder(“/Users/dax/Downloads/OUTPUTS/”, “OUT”)

	done

	done() will finish the process of copying the outputs by generating the flagfile and set the status of the assessor on XNAT to READY_TO_UPLOAD or JOB_FAILED.

	end_spider.done()

	clean

	clean(directory) will erase the temporary folder named directory that holds the data on the system.

	end_spider.clean(“/tmp/fMRIQA_test”)

Cached Classes

The Cached classes (CachedImageSession() / CachedImageScan() / CachedImageAssessor() / CachedResource()) have been created for dax package exclusively. Those class caches the session XML information from XNAT in an object.

There are used to speed the access to pyxnat objects and interact with the database to generate the assessor, check the inputs, and run the tasks on the cluster. You don’t need to create an object from those classes.

On the other hand, you might need to use them in your processor files. You can check the code on github in XnatUtils. Some methods have been created to used those classes.

You can find below for each classes the methods implemented.

CachedImageSession

	init(intf, proj, subj, sess)

	To create the object cached session. intf is the interface for XNAT. proj, subj, and sess the information about XNAT object. E.G:

cso = XnatUtils.CachedImageSession(xnat, "ADNI", "1234", "MR_Session1")

	label()

	To return the label of the session. E.G:

session_label = cso.label()

	get(name)

	To get the value of a variable for the session. E.G:

age = cso.get("age")

	scans()

	To return the list of cached scans objects for the session. E.G:

csco_list = cso.scans()
for csco in csco_list:
 # do something

	assessors()

	To return the list of cached assessors objects for the session. E.G:

cao_list = cso.assessors()
for cao in cao_list:
 # do something

	info()

	To return the information listed below for the session as a python dictionaries (keys below, several keys for the same value separated by a slash).

	ID: session id

	label/session_label: session label

	note: session note

	session_type: session type (xnat type - e.g: mr:sessiondata)

	project_id/project/project_label: project id

	original/last_updated: last time the session was updated

	modality/type: session type (e.g: MR)

	UID

	subject_id/subject_ID: subject id

	subject_label: subject label

	URI: URI used for this session

	E.G: sess_info = cso.info()

	resources()

	To return the list of cached resources objects for the session. E.G:

cro_list = cro.assessors()
for cro in cro_list:
 # do something

	get_resources()

	To return the list of cached resources objects info() for the session (list of dictionaries). E.G:

crdo_list = cso.get_resources()
for crdo in crdo_list:
 # do something

CachedImageScan

CachedImageScan has the same methods than CachedImageSession. See below for the one that changed. No method scans() and assessors().

	init(scan_element, parent)

	To create the object cached scan. scan_element is define in the XML. parent the cached session object that is the parent of the scan. E.G:

csco = XnatUtils.CachedImageScan(scan_element, cso)

	parent()

	To return the cached session associated to this scan. E.G:

cso = csco.parent()

	info()

	To return the information listed below for the scan as a python dictionaries (keys below, several keys for the same value separated by a slash).

	ID/label/scan_label/scan_id: scan id

	type/scan_type: scan type

	series_description/scan_description: scan series description

	quality/scan_quality: scan quality (usable/unusable/questionable)

	frames/scan_frames: scan frames variable

	note/scan_note: session note

	project_id/project_label: project id

	subject_id: subject id

	subject_label: subject label

	session_id: session id

	session_label: session label

	E.G: scan_info = csco.info()

CachedImageAssessor

CachedImageScan has the same methods than CachedImageSession. See below for the one that changed. get_resources() is now get_out_resources() . No method scans() and assessors().

	init(assr_element, parent)

	To create the object cached assessor. assr_element is define in the XML. parent the cached session object that is the parent of the assessor. E.G:

cao = XnatUtils.CachedImageAssessor(assr_element, cso)

	parent()

	To return the cached session associated to this assessor. E.G:

cso = cao.parent()

	info()

	To return the information listed below for the assessor as a python dictionaries (keys below, several keys for the same value separated by a slash).

	ID/assessor_id: assessor id

	label/assessor_label: assessor label

	xsiType: xsiType for the assessor (proc:genprocdata or fs:fsdata)

	procstatus: proc status for the assessor

	qcstatus: QA status for the assessor

	version: version for the assessor

	jobid: jobid on the cluster for the assessor

	jobstartdate

	memused: memory used in Mb

	walltimeused

	jobnode: node where the job is running

	proctype: proctype for the assessor

	project_id/project_label: project id

	subject_id: subject id

	subject_label: subject label

	session_id: session id

	session_label: session label

	E.G: assessor_info = cao.info()

CachedResource

CachedResource has the same methods than CachedImageSession. See below for the one that changed. No method get_resources().

	init(assr_element, parent)

	To create the object cached assessor. assr_element is define in the XML. parent the cached parent object (session/scan/assessor) that is the parent of the resource. E.G:

cro = XnatUtils.CachedImageAssessor(element, parent)

	parent()

	To return the cached parent associated to this resource. E.G:

parent = cro.parent()

	info()

	To return the information listed below for the resource as a python dictionaries (keys below, several keys for the same value separated by a slash).

	URI: URI for the resource

	label: resource label, name of the folder on XNAT (e.g: NIFTI)

	file_size: size of the files

	file_count: number of files for the resource

	format: format of the file

	content: information about the content

	E.G: resource_info = cro.info()

Methods

Looping through XNAT database

Instead of looping directly through pyxnat objects (accessing the database for each call), you can use one of the methods below to get a python list of dictionary describing the pyxnat object that you wish (same output as info() in cached classes).

	list_XXX() methods - For each pyxnat object and Xnat level, you can get a list of objects.info(). See below for the list of all of the methods:

	For project

	list_projects(intf): get the list of all projects info

	list_project_resources(intf, project_id): get the resources info for a project

	For subject

	list_subjects(intf, project_id=None): get the list of all subjects info (one project or all)

	list_subject_resources(intf, project_id, subject_id): get the resources info for a specific subject

	For session

	list_experiments(intf, project_id=None, subject_id=None): get the list of all sessions info (one project, one subject or all)

	list_experiment_resources(intf, project_id, subject_id, experiment_id): get the resources info for a specific session

	list_sessions(intf, project_id=None, subject_id=None): get the list of all sessions info (one project or all). The difference with list_experiments is that this method add more variables to the dictionaries for each session (age/handedness/gender/yob/…)

	For scan

	list_scans(intf, project_id, subject_id, experiment_id): get the list of scans for a specific session.

	list_project_scans(intf, project_id, include_shared=True): get the list of all scans in one project (set include_shared to false if you don’t want the shared scans to show up)

	list_scan_resources(intf, project_id, subject_id, experiment_id, scan_id): get the list of all resources for a specific scan

	For assessor

	list_assessors(intf, project_id, subject_id, experiment_id): get the list of assessors for a specific session.

	list_project_assessors(intf, project_id): get the list of all assessors in one project.

	list_assessor_out_resources(intf, project_id, subject_id, experiment_id, assessor_id): get the list of all resources for a specific assessor

How to loop at a XNAT level?

Now that you know about all the list methods, you can use them to extract a list of python dictionaries to loop through the database at different level and interact with XNAT.

For example, if we want to work on the scans that are “DTI” in our project “ADNI”, you will do (those lines of code will be use in the rest of the method for this section):

from dax import XnatUtils

xnat = XnatUtils.get_interface()

list_scans = XnatUtils.list_project_scans(xnat, "ADNI")

a nice way to filter this list and keep only the scan with the type __dti__:
list_scans = filter(lambda x: "dti" in x['type'].lower(), list_scans)

for scan_info in list_scans:
 # select the scan like we learned [here](#pyxnat-objects).
 # do something

Select Pyxnat Objects

Selecting a pyxnat objects like we saw in Pyxnat Objects requires the user to know the URI and remember how to call the select method in Interface.

From the object info dictionary , you can select directly the object by calling a method in dax (like scan_info above. We implemented several ways to select different objects easily.

	get_full_object(intf, obj_dict)

	To select the object define by the obj_dict. E.G:

scan_obj = XnatUtils.get_full_object(xnat, scan_info)

	select_obj(intf, project_id=None, subject_id=None, session_id=None, scan_id=None, assessor_id=None, resource=None)

	To select the object describe by its arguments. E.G:

project_obj = XnatUtils.select_obj(xnat, project_id="ADNI")
subject_obj = XnatUtils.select_obj(xnat, project_id="ADNI", subject_id="1234")
session_obj = XnatUtils.select_obj(xnat, project_id="ADNI", subject_id="1234", session_id="MR_Session1")
scan_obj = XnatUtils.select_obj(xnat, project_id="ADNI", subject_id="1234", session_id="MR_Session1", scan_id="301")
assessor = "ADNI-x-1234-x-MR_Session1-x-301-x-fMRIQA"
assessor_obj = XnatUtils.select_obj(xnat, project_id="ADNI", subject_id="1234", session_id="MR_Session1", assessor_id=assessor)
on any level: e.g on the subject for the resource TestResource
resource_obj = XnatUtils.select_obj(xnat, project_id="ADNI", subject_id="1234", resource="TestResource")

	select_assessor(intf, assessor_label)

	To select the assessor object describe by the assessor label. Alternative to select_obj for the assessor. E.G:

assessor = "ADNI-x-1234-x-MR_Session1-x-301-x-fMRIQA"
assessor_obj = XnatUtils.select_assessor(xnat, assessor)

Download from XNAT

After selecting the pyxnat object from XNAT, how can we download the files present in the resources?

dax package introduced a range of methods to download those files. See below for each of them that you can use (as always, you can check the code on github to understand how it’s working).

Line of code use for each method example:

directory = "/tmp/data/"
resource_obj = XnatUtils.select_obj(xnat, project_id="ADNI", subject_id="1234", session_id="MR_Session1", scan_id="301", resource="NIFTI")

	download_file_from_obj(directory, resource_obj, fname=None)

	To download in the directory a file from a resource object. You can specify which file by giving the name of the file. If no name, it will download the biggest file in the resource. E.G:

filepath = XnatUtils.download_file_from_obj(directory, resource_obj)

where filepath should be equal to “/tmp/data/biggest_file.nii.gz”

	download_file(directory, resource, project_id=None, subject_id=None, session_id=None, scan_id=None, assessor_id=None, fname=None)

	To download in the directory a file from a resource by giving each XNAT level label or ID. You can specify which file by giving the name of the file. If no name, it will download the biggest file in the resource. E.G:

filepath = XnatUtils.download_file(directory, "NIFTI", project_id="ADNI", subject_id="1234", session_id="MR_Session1", scan_id="301")

where filepath should be equal to “/tmp/data/biggest_file.nii.gz”

	download_files_from_obj(directory, resource_obj)

	To download in the directory all files from a resource object. E.G:

list_fpaths = XnatUtils.download_files_from_obj(directory, resource_obj)

where list_fpaths should be equal to [“/tmp/data/nifti1.nii.gz”, “/tmp/data/nifti2.nii.gz”, …]

	download_files(directory, resource, project_id=None, subject_id=None, session_id=None, scan_id=None, assessor_id=None)

	To download in the directory all files from a resource by giving each XNAT level label or ID. E.G:

list_fpaths = XnatUtils.download_files(directory, "NIFTI", project_id="ADNI", subject_id="1234", session_id="MR_Session1", scan_id="301")

where list_fpaths should be equal to [“/tmp/data/nifti1.nii.gz”, “/tmp/data/nifti2.nii.gz”, …]

	download_biggest_file_from_obj(directory, resource_obj)

	To download in the directory the biggest file from a resource object. E.G:

filepath = XnatUtils.download_biggest_file_from_obj(directory, resource_obj)

where filepath should be equal to “/tmp/data/nifti3.nii.gz”

	download_biggest_file(directory, resource, project_id=None, subject_id=None, session_id=None, scan_id=None, assessor_id=None)

	To download in the directory the biggest file from a resource by giving each XNAT level label or ID. E.G:

filepath = XnatUtils.download_biggest_file(directory, "NIFTI", project_id="ADNI", subject_id="1234", session_id="MR_Session1", scan_id="301")

where filepath should be equal to “/tmp/data/nifti3.nii.gz”

	download_from_obj(directory, xnat_obj, resources, all_files=False)

	To download in the directory the biggest file or all files (all_files=true) from resources for a specific object. E.G:

scan_obj = XnatUtils.select_obj(xnat, project_id="ADNI", subject_id="1234", session_id="MR_Session1", scan_id="301")
list_filepaths = XnatUtils.download_from_obj(directory, scan_obj, ["NIFTI", "BVAL", "BVEC"])

where list_filepaths should be equal to [“/tmp/data/nifti3.nii.gz”, “/tmp/data/nifti3.bval”, “/tmp/data/nifti3.bvec”]

	download(directory, resources, project_id=None, subject_id=None, session_id=None, scan_id=None, assessor_id=None, all_files=False)

	To download in the directory the biggest file or all files (all_files=true) by giving each XNAT level label or ID. E.G:

list_filepaths = XnatUtils.download(directory, ["NIFTI", "BVAL", "BVEC"], project_id="ADNI", subject_id="1234", session_id="MR_Session1", scan_id="301")

where list_filepaths should be equal to [“/tmp/data/nifti3.nii.gz”, “/tmp/data/nifti3.bval”, “/tmp/data/nifti3.bvec”]

Upload to XNAT

After selecting the pyxnat object from XNAT, how can you now upload the files that you generated?

dax package introduced a range of methods to upload those files. See below for each of them that you can use (as always, you can check the code on github to understand how it’s working).

Line of code use for each method example to upload to an assessor:

assessor = "ADNI-x-1234-x-MR_Session1-x-301-x-fMRIQA"
assessor_obj = XnatUtils.select_assessor(xnat, assessor)

All the methods have the boolean arguments :

	remove: to remove the same file if it already exists on XNAT for the resource

	removeall: to remove all the files on XNAT for the resource prior to upload the data

and return a boolean status, true if it uploaded successfully and false otherwise.

	upload_file_to_obj(filepath, resource_obj, remove=False, removeall=False, fname=None)

	To upload the file to a resource object on XNAT. fname=”name_you_want” to set a different name on the database for the file. E.G:

resource_obj = assessor_obj.out_resource("PDF")
filepath = "/tmp/data/report.pdf"
status = XnatUtils.upload_file_to_obj(filepath, resource_obj, remove=True, fname="report_fMRIQA.pdf")

You will see on XNAT in PDF resource the file report_fMRIQA.pdf.

	upload_file(filepath, project_id=None, subject_id=None, session_id=None, scan_id=None, assessor_id=None, resource=None, remove=False, removeall=False, fname=None)

	To upload the file to a resource by giving each XNAT level label or ID. fname=”name_you_want” to set a different name on the database for the file. E.G:

filepath = "/tmp/data/stats.txt"
status = XnatUtils.upload_file(filepath, project_id="ADNI", subject_id="1234", session_id="MR_Session1", assessor_id=assessor, resource="STATS", remove=True, fname="metrics.txt")

You will see on XNAT in STATS resource the file metrics.txt.

	upload_files_to_obj(filepaths, resource_obj, remove=False, removeall=False)

	To upload the files define in filepaths to a resource object on XNAT. E.G:

resource_obj = assessor_obj.out_resource("Niftis")
filepaths = ["/tmp/data/fa.nii.gz", "/tmp/data/md.nii.gz", "/tmp/data/ad.nii.gz", "/tmp/data/rd.nii.gz"]
status = XnatUtils.upload_files_to_obj(filepaths, resource_obj)

	upload_files(filepaths, project_id=None, subject_id=None, session_id=None, scan_id=None, assessor_id=None, resource=None, remove=False, removeall=False)

	To upload the files define in filepaths to a resource by giving each XNAT level label or ID. E.G:

filepaths = ["/tmp/data/fa.nii.gz", "/tmp/data/md.nii.gz", "/tmp/data/ad.nii.gz", "/tmp/data/rd.nii.gz"]
status = XnatUtils.upload_files(filepaths, project_id="ADNI", subject_id="1234", session_id="MR_Session1", assessor_id=assessor, resource="Niftis")

	upload_folder_to_obj(directory, resource_obj, remove=False, removeall=False)

	To upload all files from a directory to a resource object on XNAT. E.G:

resource_obj = assessor_obj.out_resource("out_images")
directory = "/tmp/data/output_images/"
status = XnatUtils.upload_folder_to_obj(directory, resource_obj)

	upload_folder(directory, project_id=None, subject_id=None, session_id=None, scan_id=None, assessor_id=None, resource=None, remove=False, removeall=False)

	To upload all files from a directory to a resource by giving each XNAT level label or ID. E.G:

directory = "/tmp/data/output_images/"
status = XnatUtils.upload_folder(directory, project_id="ADNI", subject_id="1234", session_id="MR_Session1", assessor_id=assessor, resource="out_images")

	upload_assessor_snapshots(assessor_obj, original, thumbnail)

	To upload the snapshots of a PDF to an assessor on XNAT. original is the snapshot original file path. thumbnail is the thumbnail file path for the snapshot. E.G:

original = "/tmp/snapshots/original.png"
thumbnail = "/tmp/snapshots/thumbnail.png"
status = XnatUtils.upload_assessor_snapshots(assessor_obj, original, thumbnail)

Methods for Processors using cached classes

When you create your processor file, you will probably use those functions. The processor methods use the cached classes to interact with XNAT. We implemented as well a version using the object from pyxnat directly. See below for the method in XnatUtils.

	is_cscan_unusable(cscan)

	To check if the cached scan is unusable. E.G:

if not XnatUtils.is_cscan_unusable(cscan):
 # cscan usable, do something

	is_scan_unusable(scan)

	To check if the scan object is unusable. E.G:

status = XnatUtils.is_scan_unusable(scan_obj)

	is_cscan_good_type(cscan, types_list)

	To check if the cached scan has a good type meaning if the cached scan type is in the list types_list. E.G:

status = XnatUtils.is_cscan_good_type(cscan, ["T1", "MPRAGE", "t1", "mprage"])

	is_scan_good_type(scan, types_list)

	To check if the scan object has a good type meaning if the scan type is in the list types_list. E.G:

if XnatUtils.is_scan_good_type(scan_obj, ["T1", "MPRAGE", "t1", "mprage"]):
 #good T1 scan object, do something

	has_resource(cob, resource_label)

	To check if the cached object possesses a resource called resource_label and if there is at least one file in the resource. E.G:

boolean = XnatUtils.has_resource(scan_obj, "NIFTI)

	is_cassessor_usable(cassr)

	To check if the cached assessor is usable meaning if it’s qcstatus is good or bad or not ready. Returns -1 if failed, 0 if not ready, 1 if passed. E.G:

assr_status = XnatUtils.is_cassessor_usable(cassr)
if assr_status == 1:
 # assessor ready, let's do something
elif assr_status == -1:
 # assessor qa failed, let's set the new assessor to no data
else:
 # nothing

	is_assessor_usable(assessor_obj)

	To check if the assessor object is usable meaning if it’s qcstatus is good or bad or not ready. Returns -1 if failed, 0 if not ready, 1 if passed. E.G:

assr_status = XnatUtils.is_cassessor_usable(assessor_obj)
if assr_status == 1:
 # assessor ready, let's do something
elif assr_status == -1:
 # assessor qa failed, let's set the new assessor to no data
else:
 # nothing

	is_cassessor_good_type(cassr, types_list)

	To check if the cached assessor has the good type meaning if it’s proctype is in the list given in arguments. E.G:

if XnatUtils.is_cassessor_good_type(cassr, ["fMRIQA_v2"]):
 # do something

	is_assessor_good_type(assessor_type, types_list)

	To check if the assessor object has the good type meaning if it’s proctype is in the list given in arguments. E.G:

if XnatUtils.is_assessor_good_type(cassr, ["dtiQA_v2", "dtiQA_v3"]):
 # do something

	get_good_cscans(csess, scantypes)

	To get the cached scans with a specific scan type from a cached session. E.G:

list_cscans = XnatUtils.get_good_cscans(csess, ["DTI", "DWI"])

	get_good_scans(session_obj, scantypes)

	To get the scans object with a specific scan type from a pyxnat session object. E.G:

list_scans_object = XnatUtils.get_good_scans(session_object, ["DTI", "DWI"])

	get_good_cassr(csess, proctypes)

	To get the cached assessor with a specific proctype from a cached session. E.G:

list_cassr= XnatUtils.get_good_cassr(csess, ["fMRIQA_v2"])

	get_good_assr(session_obj, proctypes)

	To get the assessor object with a specific proctype from a pyxnat session object. E.G:

list_assessor_obj= XnatUtils.get_good_cassr(session_obj, ["fMRIQA_v2"])

Other Methods

Some methods have been implemented in XnatUtils without having any relation to XNAT and pyxnat. Some of the following methods are useful in general.

	clean_directory(directory)

	To empty the directory, remove any files/folder from the directory. E.G:

XnatUtils.clean_directory("/tmp/temporary_folder/")

	gzip_nii(directory)

	To gzip all the nifty files that are not gzip in a directory (not in the subdirectories). E.G:

XnatUtils.gzip_nii("/tmp/temporary_folder/")

	ungzip_nii(directory)

	To unzip all the nifty files that are gzip in a directory (not in the subdirectories). E.G:

XnatUtils.ungzip_nii("/tmp/temporary_folder/")

	makedir(directory, prefix=’TempDir’)

	To make a directory. If the directory already exists, creates a new directory with the name: prefix_year_month_day at the date of creation. If the new name for the directory exists, clean the directory. E.G:

XnatUtils.makedir("/tmp/temporary_folder/", prefix="test")

	get_files_in_folder(directory, label=’’)

	To get all the files in a the directory (and subfolders as well). label is the path you want to add in front of each path. E.G: for all the files in /Users/Documents/test/data/outputs/

list_files = XnatUtils.get_files_in_folder("data/outputs/", label="/Users/Documents/test/")

FreeSurfer with DAX in Singularity on SLURM

This tutorial will guide you through how to use DAX to run FreeSurfer 6 recon-all using singularity containers on a SLURM cluster with all data stored on XNAT.

You can use this guide as a template to get started running your own pipelines with XNAT and DAX.

We assume that you have T1-weighted MR images loaded into XNAT in NIFTI format. We also will assume that one of these NIFTI files is named T1.nii.gz and is located in a project named PROJ1 in a subject named SUBJ1 in session SESS1 in scan SCAN1 with resource NIFTI. And the scan type of SCAN1 is T1. So, the hierarchy looks like: PROJ1/SUBJ1/SESS1/SCAN1/NIFTI/T1.nii.gz

Install DAX data types

In order to store the output from DAX pipelines such as FS6_v1, your XNAT must have the DAX data type installed. This data type can be installed by adding the DAX plugin
to your XNAT system. This will also install customizations to the XNAT interface for DAX. These include custom Image Session pages and displays.

Before installing the DAX plugin, save the current state of your XNAT so you can undo the changes. Specifically, make a backup of your XNAT_HOME, postgres db, and tomcat deployment.

Download the current plugin version dax-plugin-genProcData-1.4.2.jar [https://github.com/VUIIS/dax/blob/b616dcb7afa2c895de7f03f7b0a8bff7cd0b2b42/misc/xnat-plugins/dax-plugin-genProcData-1.4.2.jar]

When you are ready to install, stop tomcat and copy the plugin to your server. The jar file should be copied to the plugin subdirectory of your XNAT_HOME. With the jar file in place, start tomcat. When XNAT comes back online, it will load plugin contents on top of the base XNAT intallation. For more on plugins, consult the XNAT documentation at xnat.org.

Prepare DAX environment

	Log onto the system where you want to run DAX. You will need to be able to access XNAT via the REST api and be able to run slurm commands.

	Create this directory structure in home or anywhere else with sufficient space

DAX/
 Spider_Upload_Dir/
 containers/
 processors/
 settings/
 templates/

	Copy job_template.txt to the templates subdirectory job_template.txt [https://raw.githubusercontent.com/VUIIS/dax_templates/2a3d492904d87ab7e4f012b883661d8d72591ecd/job_template.txt]

	Pull the FS6 container. This will download to a SIF file that is 2.6 GB, so you may want to check for sufficient space before running the download.

cd containers
singularity pull shub://bud42/FS6:v1.2.3

	Rename the downloaded file to match the name we are expecting later.

mv FS6_v1.2.3.sif FS6_v1.2.3.simg

	Create a virtual environment for DAX (skip if you have already installed dax)

cd ../
python3 -m venv daxvenv
source daxvenv/bin/activate
pip install dax

	Download the FS6 processor yaml file FS6 processor.yaml [https://raw.githubusercontent.com/ccmvumc/dax_processors/f4f65c744da1c147ea328c587f90eb1e575bd0d1/FS6_v1.2.3_processor.yaml]

	Copy the downloaded file to your DAX/processors directory

	In your settings subdirectory, create a settings file named settings.yaml with the contents

processorlib: DAX/processors
singularity_imagedir: DAX/containers
resdir: DAX/Spider_Upload_Dir
jobtemplate: DAX/job_template.txt
admin_email: YOUR_EMAIL_ADDRESS
attrs:
 queue_limit: 1
 job_email_options: FAIL
 job_rungroup: YOUR_SLURM_GROUP
 xnat_host: YOUR_XNAT_HOST
yamlprocessors:
 - name: FS6
 filepath: FS6_v1.2.3_processor.yaml
projects:
 - project: PROJ1
 yamlprocessors: FS6

Run the processor on a single session

Now we test the processor on a single MR session. We will run on PROJ1/SUBJ1/SESS1/SCAN1 as described above. We will use dax to build the slurm batch script, run it on the cluster, and upload the results.

	Build the batch file

dax build --session SESS1 settings.yaml

This will create a new assessor on the session and then write a file in your Spider_Upload_Dir in the subdirectory DISKQ/BATCH. The file will be named the same as the assessor that was created.

You can check over the file to see if all let’s correct. You can also try running the script directly from the command line. When you’re ready to launch it on the cluster go to the next step.

	Launch the batch file

dax launch --project PROJ1 --session SESS1 settings.yaml

where PROJ1 is the label of the project in XNAT that contains the session and
SESS1 is the label of the session. This will submit the batch to SLURM.

You can monitor the job using squeue or using stracejob. To use stracejob, you’ll need to find the job ID. This can be determined via squeue or by looking in Spider_Upload_Dir in the jobid file for this job.

The next step is to run dax update after the job is complete. You can run dax update anytime and it will update on job status.
It will have to be run at least once after the job fully completes according to SLURM.

	Complete the batch

dax update --project PROJ1 settings.yaml

After update has been run on the completed job, we will upload the results to xnat.

	Upload the results

dax upload --project PROJ1

This will upload jobs to XNAT for the project named PROJ1.

Use the above as a template for testing a new processor. You will need to substitute the processor yaml file and singularity container for those you created for your pipeline. Consult the processors docs for help creating a processor yaml.

You may eventually have enough processors/projects to manage that you will want to use dax manager. This will require access to a REDCap system where you an create new projects for operational purposes.

Configure REDCap for DAX manager

To Be Done: use these zip files to create redcap instances for DAX.

ProcessorFS6v1_2021-09-16_2043.zip

General_2021-09-16_2043.zip

BuildStatus_2021-09-16_2043.zip

Configure the processor for production

After successfully testing, we can configure this processor to be used in a production account.

At Vanderbilt, we maintain a private github repository where we store all of the processor yaml files that we are currently running.

To add a new processor to this repo, we create a new branch with the new processor.
Then we submit a pull request (PR) to add the new processor to the running_processors branch.
This repo is configured to required approval by another user. With approval, you can then merge your own pull request.

After the PR is merged, we pull the updates to the production accounts.

cd /data/mcr/centos7/dax_processors
git pull origin running_processors

If the singularity image is not already in place, you need to put a copy on the production account. At Vanderbilt, the location on ACCRE is /data/mcr/centos7/singularity

We can copy a singularity SIF image to ACCRE, or pull from singularity hub (no longer supported for new containers), or pull from docker.

The FS6_v1 can also be pulled from docker if shub is not accessible.

singularity pull docker://bud42/FS6:v1.2.3

Now we can “turn on” the processor in our project settings REDCap. But first, we need to make a new instrument in REDCap for the new processor.

Add a new instrument for your new processor

In your DAX project settings REDCap, add an instrument for the processor. The instrument needs two fields, one to specify the processor file and another to optionally provide arguments.

The file name field is labeled “Processor YAML File”. The variable name should begin with the processor name and must have the suffix “_file”. For example, the FS6
file variable name is fs6_v1_file.

You should also provide a default for the processor file. This value will be used to pre-populate field whenver the Processor is turned on for a project. To set the default, modify “Action Tags / Field Annotation” to be @DEFAULT=”processor.yaml”. Using FS6 as an example, the tag would be @DEFAULT=”FS6_v1.2.3_processor.yaml”

The arguments field is labeled “Processor Arguments”. The variable name should begin with the processor name and must have the suffix “_args”. For example, the FS6
file variable name is fs6_v1_args.

Add processor to existing REDCap

If your REDCap has existing processor instruments, a convenient way to add a new processor is to copy and edit.

	Click Designer

	Click Enter Draft Mode (this allows you to make tentative changes to the REDCAp database and then submit your changes)

	Find the instrument you want to copy and click Choose Action then Copy

	Set the new instrument name, e.g for FS6 we use FS6_v1

	Leave the suffix as “_v2” and click copy instrument

	Reorder the newly created instrument to be alphabetical in the list

	Click the newly created instrument to open it

	Click the pencil to edit the field Processor YAML File

	Remove “_v2” from the Variable Name and rename it to match the new processor

	In ActionTags/Field Annotations, change the @DEFAULT value to the new processor yaml file name, e.g. Processor FS6_v1 should have @DEFAULT=”FS6_v1.2.3_processor.yaml”

	Click Save to save changes to the field Processor YAML File

	Click the pencil to edit the field Processor Arguments

	Remove “_v2” from the Variable Name and rename it to match the new processor, e.g. fs6_v1_args

	Click Save to save changes to the field Processor Arguments

	Click Submit Changes for Review (these changes should be automatically accepted)

Enable a Processor on a Project

	Go to DAX Project Settings in REDcap

	Click Record Status Dashboard

	Click the project you want to modify

	Click the processor you want to turn on

	Change ‘Complete?’ field to ‘Complete’ (we use Complete to indicate ON, any other values indicates OFF)

	Click Save & Exit Form

TBD

	how to run dcm2niix in DAX, to allow users to convert DICOM to NIFTI before running FS6

	how to check for the DAX datatype on your XNAT

	how to use nrg docker-compose to set up a test xnat instance an load a test image for FS6

	how to test slurm commands used by DAX

	how to make changes to settings files

	how to use a scan named something other than T1

 _images/assessor_list.png
B T eorar VST RS RS COWETE Mgk o
& o [000001 WSTPRSIP ST M A CONLETE Moo Oh Son s
& [20001 WIS SIS e COMLETE MeoGA e
O mrswams B WO STRAT AT o vy COWETE NesOA Srwouns
o ot ATAS B FOAGTEN VST AATP VLSTP e o AT LSS P oG
5 v i s [BAG71 VST VLSTP STP I i S COWLETE N S
5 TUGKAY | NSPOF O STRAVAT AT TAGAA 1 AGED NPT gt Srom ot
5 e NP 40700 ST ATH A ATH T8 s NS TS A s oot
5 aane [2002 WIS SO O COWLETE MoQR Son s
5 NP 728 VUSTRWSTPSTP 815 CowLETe sorang sow s
o eana BT s WATR SIS O OAS COWLETE NaOh et
o sanmn Bl ounio WTomSTiOUSTIsOULE CORETE Mot Soecums
5 WL NFOF MO VUSIPAVSTPSTP IS s NOOKA NoWRitand_SonCouns
5 Betei | NoPOF IO USTVUSTO VSTVl 00 o v NEED NPT NocApresSowCours
S USTORN NPOF SO SIAVATI AR O OO NPt Somcomt

nav.xhtml

 Table of Contents

 		
 Welcome to DAX’s documentation!

 		
 Installing DAX in a Virtual Environment

 		
 Table of Contents

 		
 Setup

 		
 Create the Virtual Environment

 		
 Install DAX

 		
 Verify Installation

 		
 Installation of fs:fsData and proc:genProcData

 		
 On XNAT VM:

 		
 ON XNAT webapp:

 		
 Source Documentation

 		
 dax – Root package

 		
 dax.task – Task class

 		
 ClusterTask

 		
 Task

 		
 XnatTask

 		
 dax.spiders – Spider class

 		
 dax.processors – Processor class

 		
 AutoProcessor

 		
 Processor

 		
 dax.log – Logging utility

 		
 setup_critical_logger()

 		
 setup_debug_logger()

 		
 setup_error_logger()

 		
 setup_info_logger()

 		
 setup_warning_logger()

 		
 dax.bin – Responsible for launching, building and updating a Task

 		
 build()

 		
 check_default_keys()

 		
 launch_jobs()

 		
 load_from_file()

 		
 raise_yaml_error_if_no_key()

 		
 read_yaml_settings()

 		
 set_logger()

 		
 undo_processing()

 		
 update_tasks()

 		
 dax.XnatUtils – Collection of utilities for upload/download and general access

 		
 AssessorHandler

 		
 CachedImageAssessor

 		
 CachedImageScan

 		
 CachedImageSession

 		
 CachedResource

 		
 InterfaceTemp

 		
 SpiderProcessHandler

 		
 DAX Manager

 		
 Table of Contents:

 		
 About

 		
 How to set it up

 		
 DAX 1

 		
 How to add a Module in DAX 1

 		
 How to add a Process in DAX 1

 		
 LDAX

 		
 How to add a Module in LDAX

 		
 How to add a Process in LDAX

 		
 Contributors

 		
 How To Contribute

 		
 FAQ

 		
 DAX Processors

 		
 About

 		
 Processor Repos

 		
 Overview

 		
 A “Simple” Example

 		
 Parts of the Processor YAML

 		
 inputs

 		
 xnat scans

 		
 xnat assessors

 		
 xnat attrs

 		
 xnat filters

 		
 outputs

 		
 command

 		
 attrs

 		
 jobtemplate

 		
 Versioning

 		
 Notes on Singularity run options

 		
 DAX Processors, version 3

 		
 About

 		
 Processor Repos

 		
 Overview

 		
 A Basic Example

 		
 Parts of the Processor YAML

 		
 inputs (required)

 		
 xnat scans

 		
 xnat assessors

 		
 xnat attrs

 		
 xnat filters

 		
 outputs

 		
 command

 		
 jobtemplate

 		
 Versioning

 		
 Notes on singularity options

 		
 Subject-Level Processors

 		
 Assessors in VUIIS XNAT

 		
 DAX Command Line Tools

 		
 Table of Contents

 		
 List of the Tools

 		
 XnatSetup

 		
 XnatQuery

 		
 XnatCheck

 		
 XnatDownload

 		
 XnatUpload

 		
 XnatReport

 		
 XnatSwitchProcessStatus

 		
 XnatProcessUpload

 		
 XnatSubjectUpdate

 		
 RedCapReport

 		
 XnatCheckLogin

 		
 Xnatinfo

 		
 Xnatsessionupdate

 		
 BIDSMapping

 		
 XnatBOND

 		
 DAX Executables

 		
 Table of Contents

 		
 DAX Packages

 		
 How Does it Work?

 		
 DAX Settings

 		
 How to Write a ProjectSettings.yaml File

 		
 DAX Executables

 		
 DAX Build

 		
 DAX Update

 		
 DAX Launch

 		
 DAX Upload

 		
 DAX Manager

 		
 Manage a Project

 		
 Table of Contents

 		
 Check Why an Assessor Failed

 		
 Set/Reset Assessors to Run

 		
 Run an XnatCheck on Your Project

 		
 Run dax_update Manually on a Project (Advanced Users)

 		
 Run dax_launch Manually on a Project (Advanced Users)

 		
 Common and Spurious Errors You May Encounter

 		
 Unable to Read Experiments for Project: XXXXXXXX

 		
 Restarting a Job

 		
 Project Settings Files

 		
 Adding Directories Caused by OSError (only relevant to LDAX)

 		
 Settings Directory is Missing from tmp Folder (only relevant to LDAX)

 		
 Verifying the Spider is Waiting to get Uploaded to XNAT

 		
 BIDSMapping: Walkthrough Tutorial

 		
 Introduction

 		
 Table of Contents

 		
 Step 1 Mapping Datatype and Scans

 		
 Step 2 Upload Datatype Mapping to XNAT

 		
 Step 3 Check Project Level File Manager

 		
 Step 5 Upload Tasktype Mapping to XNAT

 		
 Step 6 Upload Repetition Time Mapping to XNAT

 		
 Step 7 Upload Repetition Time Mapping to XNAT

 		
 Step 8 Check Project Level File Manager

 		
 Step 9 Mapping Perfusion Imaging Type

 		
 Step 10 Upload Perfusion Type to XNAT

 		
 Step 11 Check Project Level File Manager

 		
 Additional Useful BIDSMapping Tool Options

 		
 Step 12 Correct Old Mapping

 		
 Step 13 Replace Existing Mapping

 		
 Step 14 Check Corrected LOGFILE

 		
 Step 15 Add New Mapping

 		
 Step 16 Update Existing Mapping

 		
 Step 17 Check Updated LOGFILE

_images/dax_manager_module_field_note.png
Edit Field

‘You may add a new project feld o this data collection instrument by completing the fields below and clicking the Save button at the
bottom. When you add a new field, it will be added to the form on this page. For an overview of the different field types available,

you may view the 33 Eield Types video (4 i

Field Type: | Text Box (Short Text, Number, Date/Time, ..

Field Label
Module Name:

Howto use Piping

Field Annotation (optons)) Learm about Action Tags

[——————]

Variable Name (uized during data export)

demznil_philips_mod_name
(ONLY etes, umbers, and underscares.

() Ensble suo naming,
U ol varsbe basea
uponisField Laber?

Validation? (cptions) | — None -— v
o
Enable searching within biomedical ontology [

— choose ontology to search - -

Required2* ® No () Yes
*Promp i fieldis lank.

Identifier? ® No () Yes
‘Does thefsl contain deniying nformstion (., name, SSN, adres)?

Custom Alignment | Right / Vertical (RV) ¥
Align e posiionof the fedcn the pge

Field Note (optiona)) | Default: Module_dcm2ni_philips
‘Small reminder et displayed underneath Fiold

save || Cancel

_images/life_cycle_of_dax_task.png
Life Cycle of a DAX Task

_static/plus.png

_static/file.png

_static/minus.png

