

Welcome to DAX’s documentation!

DAX is Distributed Automation for XNAT [http://xnat.org/]

DAX allows you to:

	store analyzed imaging data on XNAT (datatypes)

	extract information from XNAT via scripts (Xnat_tools)

	run pipelines on your data in XNAT via a cluster (processors)

Installation

Install the latest release with pip [https://pypi.org/project/pip/]:

pip install dax

Contents:

	DAX Installation
	Table of Contents:
	Requirements

	For Linux user

	For Mac user

	Warnings
	Install DAX

	Install for Linux user

	Install for Mac user

	No Sudo access
	Verify the installation

	Programming in python

	Installation of fs:fsData and proc:genProcData
	On XNAT VM:

	ON XNAT webapp:

	Source Documentation
	dax – Root package

	dax.task – Task class

	dax.spiders – Spider class

	dax.processors – Processor class

	dax.log – Logging utility

	dax.bin – Responsible for launching, building and updating a Task

	dax.XnatUtils – Collection of utilities for upload/download and general access

	DAX Manager
	Table of Contents:
	About

	How to set it up

	How to add a Module

	How to add a Process

	Contributors

	How To Contribute

	FAQ

	DAX Processors
	About

	Processor Repos

	Overview

	A “Simple” Example

	Parts of the Processor YAML

	inputs
	xnat scans

	xnat assessors

	xnat attrs

	xnat filters

	outputs

	command

	attrs

	jobtemplate

	Versioning

	Notes on Singularity run options

DAX Installation

Table of Contents:

	Requirements

	For Linux user

	For Mac user

	Warnings

	Install dax

	For Linux user

	For Mac user

	No Sudo Access

	Verify the installation

	Programming in python

Requirements

Requirements for DAX: * Linux or MacOS operating system (has not been
tested on windows yet). * Python installed with version 2.7.X * git or
pip installed

To check that your python version is 2.7.X:

python --version

For Linux user

To install pip if you want/don’t have it (optional):

easy_install pip

To install git if you don’t have it:

apt-get install git

For Mac user

If svn command doesn’t exist on you mac, install xcode from the Apple
Store. Run it and go to Xcode -> Preferences -> Downloads -> Command
Line Tools -> Install. Now, you can use svn.

A quick way to check the installation of Xcode and command line
developer is to run:

xcode-select --install

If it asks: “install requested for command line developer tools”, do the
install.

To install pip, run:

sudo easy_install pip

If you don’t have easy_install, follow the instructions on this link
https://pypi.python.org/pypi/setuptools .

To Install git: on this link http://git-scm.com/downloads , click on the
Mac Os X button to download the package and install it.

Warnings

Before starting with the different steps, if you see a ‘Permission
denied’ while trying to install the libraries, add sudo in front of the
command line. It will ask for your password. This will use the sudo
access (http://en.wikipedia.org/wiki/Sudo) when running the command line
and you will have the permission to install packages everywhere on your
computer.

If you don’t have sudo access on your computer, follow the section No
Sudo access.

Previously all of the commonly used CLI tools (XnatSwitchProcessStatus,
Xnatupload, Xnatdownload, and Xnatinfo etc) were stored under
masimatlab. These versions are no longer maintained and the new versions
are part of DAX. If you get errors that your versions don’t work, you
should check your PATH variable

echo $PATH

If you see a reference to masimatlab/trunk/xnatspiders/Xnat_tools, you
should remove this from your path so versions do not conflict. When you
install DAX, your environement is set for the new versions (but does not
make any changes to the old versions so you need to do this manually).

If you get any nasty traceback errors, you may be missing a required
module package. Below is an example:

Traceback (most recent call last):
File "/usr/local/bin/fsdownload", line 14, in <module>
 from dax import XnatUtils
File "/Library/Python/2.7/site-packages/dax/__init__.py", line 3, in <module>
 from .launcher import Launcher
File "/Library/Python/2.7/site-packages/dax/launcher.py", line 12, in <module>
 import processors
File "/Library/Python/2.7/site-packages/dax/processors.py", line 4, in <module>
 import task
File "/Library/Python/2.7/site-packages/dax/task.py", line 9, in <module>
 import XnatUtils, bin
File "/Library/Python/2.7/site-packages/dax/bin.py", line 8, in <module>
 import redcap
File "/Library/Python/2.7/site-packages/redcap/__init__.py", line 19, in <module>
 from .project import Project
File "/Library/Python/2.7/site-packages/redcap/project.py", line 10, in <module>
 from .request import RCRequest, RedcapError, RequestException
File "/Library/Python/2.7/site-packages/redcap/request.py", line 18, in <module>
 from requests import post, RequestException
ImportError: No module named requests

In this case, the “requests” package is missing. To install, just run
“sudo pip install requests”. If you get other import errors, they can
generally be fixed by running sudo pip install where package name is the
last word in the ImportError line.

Install DAX

Install for Linux user

	Install dax (Distributed Automation for XNAT) package:

With pip:

sudo pip install dax
#or
pip install https://github.com/VUIIS/dax/archive/master.zip --upgrade
#to get the last version of dax and not the version on pip

OR with git:

git clone git://github.com/VUIIS/dax
cd dax
sudo python setup.py install

	add the XNAT variables to your file ~/.xnat_profile:

Run these commands:

echo "export XNAT_USER=XXXXXXXX" >> ~/.xnat_profile
echo "export XNAT_PASS=XXXXXXXX" >> ~/.xnat_profile
echo "export XNAT_HOST=http://XXXXXXXXXXX" >> ~/.xnat_profile

Replace the XXXXX by your personal information.

	Last step, you need to check that the file .xnat_profile is called
in your .bash_profile.

To do so, use the following command to see the content of your file
.bash_profile:

cat ~/.bash_profile

If you don’t see the line “source ~/.xnat_profile” or “.
~/.xnat_profile”, your configuration file is not linked to your
bash_profile.

To do so, run:

echo "source ~/.xnat_profile" >> ~/.bash_profile

	Apply the changes:

Run this command:

. ~/.xnat_profile

You are ready to go.

Install for Mac user

	Install dax (Distributed Automation for XNAT) package:

With pip:

sudo pip install dax
or
pip install https://github.com/VUIIS/dax/archive/master.zip --upgrade
#to get the last version of dax and not the version on pip

OR with git:

git clone git://github.com/VUIIS/dax
cd dax
sudo python setup.py install

	add the XNAT variables to your file ~/.xnat_profile:

Run these commands:

echo "export XNAT_USER=XXXXXXXX" >> ~/.xnat_profile
echo "export XNAT_PASS=XXXXXXXX" >> ~/.xnat_profile
echo "export XNAT_HOST=http://xnat.vanderbilt.edu:8080/xnat" >> ~/.xnat_profile

Replace the XXXXX by your personal information.

	Last step, you need to check that the file .xnat_profile is called
in your .bash_profile.

To do so, use the following command to see the content of your file
.bash_profile:

cat ~/.bash_profile

If you don’t see the line “source ~/.xnat_profile” or “.
~/.xnat_profile”, your configuration file is not linked to your
bash_profile.

To do so, run:

echo "source ~/.xnat_profile" >> ~/.bash_profile

	Apply the changes:

Run this command:

. ~/.xnat_profile

You are ready to go.

No Sudo access

If you are not a sudoer on your computer (Linux or MacOS), you can still
install dax locally. You need to use git to clone the dax repository and
install it locally. Follow the steps below to process with the
installation:

git clone git://github.com/VUIIS/dax
cd dax
python setup.py install --user

You will need to add the local folder of dax/Xnat_tools executables to
your PATH:

	For Linux: echo “export PATH=/.local/bin:$PATH”>>/.bashrc

	For MacOS: echo “export PATH=~/Library/Python/2.7/bin/:$PATH” >>
~/.profile

If you don’t see a line like “source ~/.profile” or “. ~/.profile” (same
for .bashrc), your configuration file is not linked to your
bash_profile. To do so, run:

echo "source ~/.profile" >> ~/.bash_profile
or for bashrc
echo "source ~/.bashrc" >> ~/.bash_profile

Run your configuration file to apply the changes:

. ~/.profile
#or for bashrc
. ~/.bashrc

Verify the installation

If you want to be sure everything is installed, you can check running
those commands:

XXXXXXXXX$ python
Python 2.7.1 (r271:86832, Jul 31 2011, 19:30:53)
[GCC 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2335.15.00)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>import httplib2
>>>import lxml
>>>import pyxnat
>>>import redcap
>>>import dax

If you don’t have any error, the python packages are all installed
properly.

Now you can verify your logins by running:

XnatCheckLogin

If you see ‘–>Good login’, you are good to go.

You are ready to use the Xnat_tools, dax executables or the spiders.

Programming in python

All the Spiders/DAX package/Xnat_tools are written in python.

‘’‘Where can I learn how to program in python?’‘’ If you want to learn
how to program in python, here are several links that could help you: *
http://www.learnpython.org * https://www.python.org *
http://stackoverflow.com * http://google.com

‘’‘Where can I program in python?’‘’

	You can use any text Editor that you like to program in python.

	There is an extension for Eclipse for python development called
pydev. Here is the link to install pydev on Eclipse and it explains
how to create a script :
http://www.rose-hulman.edu/class/csse/resources/Eclipse/eclipse-python-configuration.htm

	Atom (https://atom.io) is a nice editor developed by the team who
created github.

Installation of fs:fsData and proc:genProcData

Prerequisites:

	install an XNAT instance
https://wiki.xnat.org/documentation/getting-started-with-xnat

On XNAT VM:

	Make a BACKUP of your $XNAT_HOME, postgres db, and tomcat deployment

	Stop tomcat

	Copy plugins to XNAT

Copy the files dax-plugin-fsData-1.0.0.jar and dax-plugin-genProcData-1.4.0.jar to ${XNAT_HOME}/plugins

The jar_files folder is located in dax package at the path
dax/dax/xnat_datatypes/jar_files. You can download the files from github
repository: https://github.com/VUIIS/dax .

	Start tomcat and confirm that plugins are installed

ON XNAT webapp:

	Log onto XNAT as admin

	click Administer > Data types

	click Setup Additional Data Type

	for fs:fsData

4.a) select fs:fsData and valid without adding anything at first.

4.b) Come back to the new types and edit the fields:

enter "FreeSurfer" in both Singular Name and Plural Name field
enter "FS" in Code field

4.c) Edit the “Available Report Actions” by adding delete if you want to
be able to delete assessor with the following values:

Remove Name: delete
Display Name: Delete
Grouping:
Image: delete.gif
Popup:
Secure Access: delete
Feature:
Additional Parameters:
Sequence: 4

4.d) click submit and then accept defaults for subsequent screens

	for proc:genProcData

5.a) select proc:genProcData and valid without adding anything at first.

5.b) Come back to the new types and edit the fields:

enter "Processing" in both Singular Name and Plural Name field
enter "Proc" in Code field

5.c) Edit the “Available Report Actions” by adding delete if you want to
be able to delete assessor with the following values:

Remove Name: delete
Display Name: Delete
Grouping:
Image: delete.gif
Popup:
Secure Access: delete
Feature:
Additional Parameters:
Sequence: 4

5.d) click submit and then accept defaults for subsequent screens

You are now ready to use the two assessors fs:fsData and
proc:genProcData

Source Documentation

dax – Root package

dax.task – Task class

Task object to generate / manage assessors and cluster.

	
class dax.task.Task(processor, assessor, upload_dir)

	Class Task to generate/manage the assessor with the cluster

	
check_date()

	
	Sets the job created date if the assessor was not made through

	dax_build

	Returns

	Returns if get_createdate() is != ‘’, sets date otherwise

	
check_job_usage()

	
	The task has now finished, get the amount of memory used, the amount of

	walltime used, the jobid of the process, the node the process ran on,
and when it started from the scheduler. Set these values on XNAT

	Returns

	None

	
check_running(jobid=None)

	Check to see if a job specified by the scheduler ID is still running

	Parameters

	jobid – The ID of the job in question assigned by the scheduler.

	Returns

	A String of JOB_RUNNING if the job is running or enqueued and
JOB_FAILED if the ready flag (see read_flag_exists) does not exist
in the assessor label folder in the upload directory.

	
commands(jobdir)

	Call the get_cmds method of the class Processor.

	Parameters

	jobdir – Fully qualified path where the job will run on the node.
Note that this is likely to start with /tmp on most grids.

	Returns

	A string that makes a command line call to a spider with all
args.

	
get_createdate()

	Get the date an assessor was created

	Returns

	String of the date the assessor was created in “%Y-%m-%d”
format

	
get_job_status(jobid=None)

	Get the status of a job given its jobid as assigned by the scheduler

	Parameters

	jobid – job id assigned by the scheduler

	Returns

	string from call to cluster.job_status or UNKNOWN.

	
get_job_usage()

	
	Get the amount of memory used, the amount of walltime used, the jobid

	of the process, the node the process ran on, and when it started
from the scheduler.

	Returns

	List of strings. Memory used, walltime used, jobid, node used,
and start date

	
get_jobid()

	Get the jobid of an assessor as stored on XNAT

	Returns

	string of the jobid

	
get_jobnode()

	Gets the node that a process ran on

	Returns

	String identifying the node that a job ran on

	
get_jobstartdate()

	Get the date that the job started

	Returns

	String of the date that the job started in “%Y-%m-%d” format

	
get_memused()

	Get the amount of memory used for a process

	Returns

	String of how much memory was used

	
get_processor_name()

	Get the name of the Processor for the Task.

	Returns

	String of the Processor name.

	
get_processor_version()

	Get the version of the Processor.

	Returns

	String of the Processor version.

	
get_qcstatus()

	Get the qcstatus of the assessor

	Returns

	A string of the qcstatus for the assessor if it exists.
If it does not, it returns DOES_NOT_EXIST.
The else case returns an UNKNOWN xsiType with the xsiType of the
assessor as stored on XNAT.

	
get_status()

	Get the procstatus of an assessor

	Returns

	The string of the procstatus of the assessor.
DOES_NOT_EXIST if the assessor does not exist

	
get_statuses()

	Get the procstatus, qcstatus, and job id of an assessor

	Returns

	Serially ordered strings of the assessor procstatus,
qcstatus, then jobid.

	
get_walltime()

	Get the amount of walltime used for a process

	Returns

	String of how much walltime was used for a process

	
is_open()

	
	Check to see if a task is still in “Open” status as defined in

	OPEN_STATUS_LIST.

	Returns

	True if the Task is open. False if it is not open

	
launch(jobdir, job_email=None, job_email_options='a', xnat_host=None, writeonly=False, pbsdir=None, force_no_qsub=False)

	Method to launch a job on the grid

	Parameters

	
	jobdir – absolute path where the data will be stored on the node

	job_email – who to email if the job fails

	job_email_options – grid-specific job email options (e.g.,
fails, starts, exits etc)

	xnat_host – set the XNAT_HOST in the PBS job

	writeonly – write the job files without submitting them

	pbsdir – folder to store the pbs file

	force_no_qsub – run the job locally on the computer (serial mode)

	Raises

	cluster.ClusterLaunchException if the jobid is 0 or empty
as returned by pbs.submit() method

	Returns

	True if the job failed

	
outlog_path()

	Method to return the path of outlog file for the job

	Returns

	A string that is the absolute path to the OUTLOG file.

	
pbs_path(writeonly=False, pbsdir=None)

	Method to return the path of the PBS file for the job

	Parameters

	
	writeonly – write the job files without submitting them in TRASH

	pbsdir – folder to store the pbs file

	Returns

	A string that is the absolute path to the PBS file that will
be submitted to the scheduler for execution.

	
ready_flag_exists()

	Method to see if the flag file
<UPLOAD_DIR>/<ASSESSOR_LABEL>/READY_TO_UPLOAD.txt exists

	Returns

	True if the file exists. False if the file does not exist.

	
reproc_processing()

	If the procstatus of an assessor is REPROC on XNAT, rerun the assessor.

	Returns

	None

	
set_createdate(date_str)

	Set the date of the assessor creation to user passed value

	Parameters

	date_str – String of the date in “%Y-%m-%d” format

	Returns

	String of today’s date in “%Y-%m-%d” format

	
set_createdate_today()

	Set the date of the assessor creation to today

	Returns

	String of todays date in “%Y-%m-%d” format

	
set_jobid(jobid)

	Set the job ID of the assessor on XNAT

	Parameters

	jobid – The ID of the process assigned by the grid scheduler

	Returns

	None

	
set_jobnode(jobnode)

	Set the value of the the node that the process ran on on the grid

	Parameters

	jobnode – String identifying the node the job ran on

	Returns

	None

	
set_jobstartdate(date_str)

	
	Set the date that the job started on the grid based on user passed

	value

	Parameters

	date_str – Datestring in the format “%Y-%m-%d” to set the job
starte date to

	Returns

	None

	
set_jobstartdate_today()

	Set the date that the job started on the grid to today

	Returns

	call to set_jobstartdate with today’s date

	
set_launch(jobid)

	Set the date that the job started and its associated ID on XNAT.
Additionally, set the procstatus to JOB_RUNNING

	Parameters

	jobid – The ID of the process assigned by the grid scheduler

	Returns

	None

	
set_memused(memused)

	Set the amount of memory used for a process

	Parameters

	memused – String denoting the amount of memory used

	Returns

	None

	
set_proc_and_qc_status(procstatus, qcstatus)

	Set the procstatus and qcstatus of the assessor

	Parameters

	
	procstatus – String to set the procstatus of the assessor to

	qcstatus – String to set the qcstatus of the assessor to

	Returns

	None

	
set_qcstatus(qcstatus)

	Set the qcstatus of the assessor

	Parameters

	qcstatus – String to set the qcstatus to

	Returns

	None

	
set_status(status)

	Set the procstatus of an assessor on XNAT

	Parameters

	status – String to set the procstatus of the assessor to

	Returns

	None

	
set_walltime(walltime)

	Set the value of walltime used for an assessor on XNAT

	Parameters

	walltime – String denoting how much time was used running
the process.

	Returns

	None

	
undo_processing()

	
	Unset the job ID, memory used, walltime, and jobnode information

	for the assessor on XNAT

	Except

	pyxnat.core.errors.DatabaseError when attempting to
delete a resource

	Returns

	None

	
update_status()

	Update the satus of a Task object.

	Returns

	the “new” status (updated) of the Task.

	
class dax.task.ClusterTask(assr_label, upload_dir, diskq)

	Class Task to generate/manage the assessor with the cluster

	
batch_path()

	Method to return the path of the PBS file for the job

	Returns

	A string that is the absolute path to the PBS file that will
be submitted to the scheduler for execution.

	
build_commands()

	Call the get_cmds method of the class Processor.

	Parameters

	jobdir – Fully qualified path where the job will run on the node.
Note that this is likely to start with /tmp on most grids.

	Returns

	A string that makes a command line call to a spider with all
args.

	
build_task()

	Method to build a job

	
check_date()

	Sets the job created date if the assessor was not made via dax_build

	
check_job_usage()

	
	The task has now finished, get the amount of memory used, the amount of

	walltime used, the jobid of the process, the node the process ran on,
and when it started from the scheduler. Set these values locally

	Returns

	None

	
check_running()

	Check to see if a job specified by the scheduler ID is still running

	Parameters

	jobid – The ID of the job in question assigned by the scheduler.

	Returns

	A String of JOB_RUNNING if the job is running or enqueued and
JOB_FAILED if the ready flag (see read_flag_exists) does not exist
in the assessor label folder in the upload directory.

	
commands(jobdir)

	Call the get_cmds method of the class Processor.

	Parameters

	jobdir – Fully qualified path where the job will run on the node.
Note that this is likely to start with /tmp on most grids.

	Returns

	A string that makes a command line call to a spider with all
args.

	
get_createdate()

	Get the date an assessor was created

	Returns

	String of the date the assessor was created in “%Y-%m-%d”
format

	
get_job_status()

	Get the status of a job given its jobid as assigned by the scheduler

	Parameters

	jobid – job id assigned by the scheduler

	Returns

	string from call to cluster.job_status or UNKNOWN.

	
get_job_usage()

	
	Get the amount of memory used, the amount of walltime used, the jobid

	of the process, the node the process ran on, and when it started
from the scheduler.

	Returns

	List of strings. Memory used, walltime used, jobid, node used,
and start date

	
get_jobid()

	Get the jobid of an assessor as stored in local cache

	Returns

	string of the jobid

	
get_jobnode()

	Gets the node that a process ran on

	Returns

	String identifying the node that a job ran on

	
get_jobstartdate()

	Get the date that the job started

	Returns

	String of the date that the job started in “%Y-%m-%d” format

	
get_memused()

	Get the amount of memory used for a process

	Returns

	String of how much memory was used

	
get_processor_name()

	Get the name of the Processor for the Task.

	Returns

	String of the Processor name.

	
get_processor_version()

	Get the version of the Processor.

	Returns

	String of the Processor version.

	
get_qcstatus()

	Get the qcstatus

	
get_status()

	Get the procstatus

	Returns

	The string of the procstatus

	
get_statuses()

	Get the procstatus, qcstatus, and job id of an assessor

	
get_walltime()

	Get the amount of walltime used for a process

	Returns

	String of how much walltime was used for a process

	
is_open()

	
	Check to see if a task is still in “Open” status as defined in

	OPEN_STATUS_LIST.

	Returns

	True if the Task is open. False if it is not open

	
launch(force_no_qsub=False)

	Method to launch a job on the grid

	Raises

	cluster.ClusterLaunchException if the jobid is 0 or empty
as returned by pbs.submit() method

	Returns

	True if the job failed

	
outlog_path()

	Method to return the path of outlog file for the job

	Returns

	A string that is the absolute path to the OUTLOG file.

	
reproc_processing()

	
	Raises

	NotImplementedError

	Returns

	None

	
set_createdate(date_str)

	Set the date of the assessor creation to user passed value

	Parameters

	date_str – String of the date in “%Y-%m-%d” format

	Returns

	String of today’s date in “%Y-%m-%d” format

	
set_createdate_today()

	Set the date of the assessor creation to today

	Returns

	String of todays date in “%Y-%m-%d” format

	
set_jobid(jobid)

	Set the job ID of the assessor

	Parameters

	jobid – The ID of the process assigned by the grid scheduler

	Returns

	None

	
set_jobnode(jobnode)

	Set the value of the the node that the process ran on on the grid

	Parameters

	jobnode – String identifying the node the job ran on

	Returns

	None

	
set_jobstartdate(date_str)

	
	Set the date that the job started on the grid based on user passed

	value

	Parameters

	date_str – Datestring in the format “%Y-%m-%d” to set the job
starte date to

	Returns

	None

	
set_launch(jobid)

	Set the date that the job started and its associated ID.
Additionally, set the procstatus to JOB_RUNNING

	Parameters

	jobid – The ID of the process assigned by the grid scheduler

	Returns

	None

	
set_memused(memused)

	Set the amount of memory used for a process

	Parameters

	memused – String denoting the amount of memory used

	Returns

	None

	
set_proc_and_qc_status(procstatus, qcstatus)

	Set the procstatus and qcstatus of the assessor

	
set_qcstatus(qcstatus)

	Set the qcstatus of the assessor

	Parameters

	qcstatus – String to set the qcstatus to

	Returns

	None

	
set_status(status)

	Set the procstatus of an assessor on XNAT

	Parameters

	status – String to set the procstatus of the assessor to

	Returns

	None

	
set_walltime(walltime)

	Set the value of walltime used for an assessor

	Parameters

	walltime – String denoting how much time was used running
the process.

	Returns

	None

	
undo_processing()

	
	Unset the job ID, memory used, walltime, and jobnode information

	for the assessor on XNAT

	Except

	pyxnat.core.errors.DatabaseError when attempting to
delete a resource

	Returns

	None

	
update_status()

	Update the status of a Cluster Task object.

	Returns

	the “new” status (updated) of the Task.

	
upload_outlog_dir()

	Method to return the path of outlog file for the job

	Returns

	A string that is the absolute path to the OUTLOG file.

	
upload_pbs_dir()

	Method to return the path of dir for the PBS

	Returns

	A string that is the directory path for the PBS dir

	
class dax.task.XnatTask(processor, assessor, upload_dir, diskq)

	Class Task to generate/manage the assessor with the cluster

	
batch_path()

	Method to return the path of the PBS file for the job

	Returns

	A string that is the absolute path to the PBS file that will
be submitted to the scheduler for execution.

	
build_commands(assr, jobdir)

	Call the build_cmds method of the class Processor.

	Parameters

	jobdir – Fully qualified path where the job will run on the node.
Note that this is likely to start with /tmp on most grids.

	Returns

	A string that makes a command line call to a spider with all
args.

	
build_task(assr, jobdir, job_email=None, job_email_options='a', xnat_host=None)

	Method to build a job

	
check_job_usage()

	
	The task has now finished, get the amount of memory used, the amount of

	walltime used, the jobid of the process, the node the process ran on,
and when it started from the scheduler. Set these values on XNAT

	Returns

	None

	
check_running()

	Check to see if a job specified by the scheduler ID is still running

	Parameters

	jobid – The ID of the job in question assigned by the scheduler.

	Returns

	A String of JOB_RUNNING if the job is running or enqueued and
JOB_FAILED if the ready flag (see read_flag_exists) does not exist
in the assessor label folder in the upload directory.

	
get_job_status()

	Get the status of a job given its jobid as assigned by the scheduler

	Parameters

	jobid – job id assigned by the scheduler

	Returns

	string from call to cluster.job_status or UNKNOWN.

	
launch()

	Method to launch a job on the grid

	
outlog_path()

	Method to return the path of outlog file for the job

	Returns

	A string that is the absolute path to the OUTLOG file.

	
set_launch(jobid)

	Set the date that the job started and its associated ID on XNAT.
Additionally, set the procstatus to JOB_RUNNING

	Parameters

	jobid – The ID of the process assigned by the grid scheduler

	Returns

	None

	
update_status()

	Update the satus of an XNAT Task object.

	Returns

	the “new” status (updated) of the Task.

dax.spiders – Spider class

Title: spiders.py
Author: Benjamin Yvernault
contact: b.yvernault@ucl.ac.uk
Purpose:

Spider base class and class for Scan and Session spider
Spider name must be: Spider_[name]_v[version].py
Utils for spiders

	
class dax.spiders.Spider(spider_path, jobdir, xnat_project, xnat_subject, xnat_session, xnat_host=None, xnat_user=None, xnat_pass=None, suffix='', subdir=True, skip_finish=False)

	Base class for spider

	
check_executable(executable, name, version_opt='--version')

	Method to check the executable.

	Parameters

	
	executable – executable path

	name – name of Executable

	Returns

	Complete path to the executable

	
define_spider_process_handler()

	
	Define the SpiderProcessHandler so the file(s) and PDF are checked for

	existence and uploaded to the upload_dir accordingly.

Implemented in derived classes.

	Raises

	NotImplementedError() if not overridden.

	Returns

	None

	
download(obj_label, resource, folder)

	
	Return a python list of the files downloaded for the scan’s resource

	
	example:

	
download(scan_id, “DICOM”, “/Users/test”)

	or

	download(assessor_label, “DATA”, “/Users/test”)

	Parameters

	
	obj_label – xnat object label (scan ID or assessor label)

	resource – folder name under the xnat object

	folder – download directory

	Returns

	python list of files downloaded

	
download_inputs()

	Download inputs data from XNAT define in self.inputs.

self.inputs = list of data dictionary with keys define below
keys:

‘type’: ‘scan’ or ‘assessor’ or ‘subject’ or ‘project’ or ‘session’
‘label’: label on XNAT (not needed for session/subject/project)
‘resource’: name of resource to download or list of resources
‘dir’: directory to download files into (optional)

	for assessor only if not giving the label but just proctype
‘scan’: id of the scan for the assessor (if None, sessionAssessor)

	self.data = list of dictionary with keys define below:

	‘label’: label on XNAT
‘files’: list of files downloaded

set self.data, a python list of the data downloaded.

	
end()

	Finish the script by sending the end of script flag and cleaning folder

	Parameters

	jobdir – directory for the spider

	Returns

	None

	
finish()

	Method to copy the results in the Spider Results folder dax.RESULTS_DIR
Implemented in derived class objects.

	Raises

	NotImplementedError if not overriden by user

	Returns

	None

	
static get_data_dict(otype, label, resource, directory, scan=None)

	Create a data_dict for self.inputs from user need.

	
get_exe_version(executable, version_opt='--version')

	Method to check the executable.

	Parameters

	
	executable – executable to run

	version_opt – options to get the version of the executable

	Returns

	version

	
get_xnat_dict(data_dict, resource)

	Return a OrderedDict dictionary with XNAT information.

	keys:

	project
subject
experiment
scan
resource
assessor
out/resource (for assessor)

	
has_spider_handler()

	
	Check to see that the SpiderProcessHandler is defined. If it is not,

	call define_spider_process_handler

	Returns

	None

	
merge_pdf_pages(pdf_pages, pdf_final)

	Concatenate all pdf pages in the list into a final pdf.

See function at the end of the file.

	
plot_images_page(pdf_path, page_index, nii_images, title, image_labels, slices=None, cmap='gray', vmins=None, vmaxs=None, volume_ind=None, orient='ax')

	Plot list of images (3D-4D) on a figure (PDF page).

See function at the end of the file.

	
plot_stats_page(pdf_path, page_index, stats_dict, title, tables_number=3, columns_header=['Header', 'Value'], limit_size_text_column1=30, limit_size_text_column2=10)

	Generate pdf report of stats information from a csv/txt.

See function at the end of the file.

	
pre_run()

	Pre-Run method to download and organise inputs for the pipeline
Implemented in derived class objects.

	Raises

	NotImplementedError if not overridden.

	Returns

	None

	
print_args(argument_parse)

	print arguments given to the Spider

	Parameters

	argument_parse – argument parser

	Returns

	None

	
print_end()

	Last print statement to give the time and date at the end of the spider

	Returns

	None

	
print_err(err_message)

	Print error message using time writer

	Parameters

	err_message – error message displayed for the user

	Returns

	None

	
print_info(author, email)

	Print information on the spider using time writer

	Parameters

	
	author – author of the spider

	email – email of the author

	Returns

	None

	
print_init(argument_parse, author, email)

	Print a message to display information on the init parameters, author,
email, and arguments using time writer

	Parameters

	
	argument_parse – argument parser

	author – author of the spider

	email – email of the author

	Returns

	None

	
print_msg(message)

	Print message using time writer

	Parameters

	message – string displayed for the user

	Returns

	None

	
run()

	Runs the “core” or “image processing process” of the pipeline
Implemented in derived class objects.

	Raises

	NotImplementedError if not overridden.

	Returns

	None

	
run_cmd_args()

	Run a command line via os.system() with arguments set in self.cmd_args

	cmd_args is a dictionary:

	exe: executable to use (matlab, python, sh)
template: string defining the command line with argument
args: dictionary with:

key = argument
value = value to set

filename: name for the file if written into a file (optional)

	Returns

	True if succeeded, False otherwise

	
run_system_cmd(cmd)

	Run system command line via os.system()

	Parameters

	cmd – command to run

	Returns

	True if succeeded, False otherwise

	
select_obj(intf, obj_label, resource)

	Select scan or assessor resource

	Parameters

	
	obj_label – xnat object label (scan ID or assessor label)

	resource – folder name under the xnat object

return pyxnat object

	
static select_str(xnat_dict)

	Return string for pyxnat to select object from python dict

	Parameters

	tmp_dict – python dictionary with xnat information
keys = [“project”, “subject”, “experiement”, “scan”, “resource”]

or

	keys = [“project”, “subject”, “experiement”, “assessor”,

	”out/resource”]

	Return string

	string path to select pyxnat object

	
upload(fpath, resource)

	Upload files to the queue on the cluster to be upload to XNAT by DAX
E.g: spider.upload(“/Users/DATA/”, “DATA”)

spider.upload(“/Users/stats_dir/statistical_measures.txt”, “STATS”)

	Parameters

	
	fpath – path to the folder/file to be uploaded

	resource – folder name to upload to on the assessor

	Raises

	ValueError if the file to upload does not exist

	Returns

	None

	
upload_dict(files_dict)

	
	upload files to the queue on the cluster to be upload to XNAT by DAX

	following the files python dictionary: {resource_name : fpath}

	E.g: fdict = {“DATA”“/Users/DATA/”, “PDF”: “/Users/PDF/report.pdf”}

	spider.upload_dict(fdict)

	Parameters

	files_dict – python dictionary containing the pair resource/fpath

	Raises

	ValueError if the filepath is not a string or a list

	Returns

	None

	
class dax.spiders.ScanSpider(spider_path, jobdir, xnat_project, xnat_subject, xnat_session, xnat_scan, xnat_host=None, xnat_user=None, xnat_pass=None, suffix='', subdir=True, skip_finish=False)

	Derived class for scan-spider

	
define_spider_process_handler()

	
	Define the SpiderProcessHandler for the end of scan spider

	using the init attributes about XNAT

	Returns

	None

	
finish()

	Method to copy the results in the Spider Results folder dax.RESULTS_DIR
Implemented in derived class objects.

	Raises

	NotImplementedError if not overriden by user

	Returns

	None

	
pre_run()

	Pre-Run method to download and organise inputs for the pipeline
Implemented in derived class objects.

	Raises

	NotImplementedError if not overridden.

	Returns

	None

	
run()

	Runs the “core” or “image processing process” of the pipeline
Implemented in derived class objects.

	Raises

	NotImplementedError if not overridden.

	Returns

	None

	
class dax.spiders.SessionSpider(spider_path, jobdir, xnat_project, xnat_subject, xnat_session, xnat_host=None, xnat_user=None, xnat_pass=None, suffix='', subdir=True, skip_finish=False)

	Derived class for session-spider

	
define_spider_process_handler()

	
	Define the SpiderProcessHandler for the end of session spider

	using the init attributes about XNAT

	Returns

	None

	
finish()

	Method to copy the results in the Spider Results folder dax.RESULTS_DIR
Implemented in derived class objects.

	Raises

	NotImplementedError if not overriden by user

	Returns

	None

	
pre_run()

	Pre-Run method to download and organise inputs for the pipeline
Implemented in derived class objects.

	Raises

	NotImplementedError if not overridden.

	Returns

	None

	
run()

	Runs the “core” or “image processing process” of the pipeline
Implemented in derived class objects.

	Raises

	NotImplementedError if not overridden.

	Returns

	None

	
class dax.spiders.AutoSpider(name, params, outputs, template, version=None, exe_lang=None)

	Class for Autospider

	
copy_input(src, input_name)

	Copy inputs or download from XNAT.

	
copy_inputs()

	Copy the inputs data for AutoSpider.

	
copy_local_input(src, input_name)

	Copy local inputs.

	
copy_xnat_input(src, input_name)

	Copy xnat inputs.

	
download_xnat_file(src, dst)

	Download XNAT specific file.

	
download_xnat_resource(src, dst)

	Download XNAT complete resource.

	
end()

	Finish the script by sending the end of script flag and cleaning folder
:return: None

	
finish()

	finish method to copy the results.

	
get_argparser()

	Get argparser for the AutoSpider.

	
go()

	Main method for AutoSpider.

	
is_xnat_uri(uri)

	Check if uri is xnat or local.

	
pre_run()

	Pre-Run method to download and organise inputs for the pipeline
Implemented in derived class objects.

	
print_args(argument_parse)

	print arguments given to the Spider

	Parameters

	argument_parse – argument parser

	Returns

	None

	
print_end()

	Last print statement

	Returns

	None

	
run()

	Run method to execute the template for AutoSpider.

	
class dax.spiders.TimedWriter(name=None, use_date=False)

	Class to automatically write timed output message

	Args:

	name - Names to write with output (default=None)

	Examples:

	>>>a = Time_Writer()
>>>a(“this is a test”)
[00d 00h 00m 00s] this is a test
>>>sleep(60)
>>>a(“this is a test”)
[00d 00h 01m 00s] this is a test

Written by Andrew Plassard (Vanderbilt)

	
print_stderr_message(text)

	Prints a timed message to stderr

	Parameters

	text – The text to print

	Returns

	None

	
print_timed_message(text, pipe=<open file '<stdout>', mode 'w'>)

	Prints a timed message

	Parameters

	
	text – text to print

	pipe – pipe to write to. defaults to sys.stdout

	Returns

	None

dax.processors – Processor class

Processor class define for Scan and Session.

	
class dax.processors.Processor(walltime_str, memreq_mb, spider_path, version=None, ppn=1, env=None, suffix_proc='', xsitype='proc:genProcData', job_template=None)

	Base class for processor

	
build_cmds(cobj, dir)

	Build the commands that will go in the PBS/SLURM script
:raises: NotImplementedError if not overridden from base class.
:return: None

	
default_settings_spider(spider_path)

	Get the default spider version and name

	Parameters

	spider_path – Fully qualified path and file of the spider

	Returns

	None

	
get_assessor_input_types()

	Enumerate the assessor input types for this. The default implementation
returns an empty collection; override this method if you are inheriting
from a non-yaml processor.
:return: a list of input assessor types

	
get_proctype()

	Return the processor name for this processor. Override this method if
you are inheriting from a non-yaml processor.
:return: the name of the processor type

	
has_inputs()

	Check to see if the spider has all the inputs necessary to run.

	Raises

	NotImplementedError if user does not override

	Returns

	None

	
set_spider_settings(spider_path, version)

	Method to set the spider version, path, and name from filepath

	Parameters

	
	spider_path – Fully qualified path and file of the spider

	version – version of the spider

	Returns

	None

	
should_run()

	Responsible for determining if the assessor should shouw up in session.

	Raises

	NotImplementedError if not overridden.

	Returns

	None

	
class dax.processors.ScanProcessor(scan_types, walltime_str, memreq_mb, spider_path, version=None, ppn=1, env=None, suffix_proc='', full_regex=False, job_template=None)

	Scan Processor class for processor on a scan on XNAT

	
get_assessor(cscan)

	Returns the assessor object depending on cscan and the assessor label.

	Parameters

	cscan – CachedImageScan object from XnatUtils

	Returns

	String of the assessor label

	
get_assessor_name(cscan)

	Returns the label of the assessor

	Parameters

	cscan – CachedImageScan object from XnatUtils

	Returns

	String of the assessor label

	
get_task(cscan, upload_dir)

	Get the Task object

	Parameters

	
	cscan – CachedImageScan object from XnatUtils

	upload_dir – the directory to put the processed data when the
process is done

	Returns

	Task object

	
has_inputs()

	
	Method to check and see that the process has all of the inputs

	that it needs to run.

	Raises

	NotImplementedError if not overridden.

	Returns

	None

	
should_run(scan_dict)

	Method to see if the assessor should appear in the session.

	Parameters

	scan_dict – Dictionary of information about the scan

	Returns

	True if it should run, false if it shouldn’t

	
class dax.processors.SessionProcessor(walltime_str, memreq_mb, spider_path, version=None, ppn=1, env=None, suffix_proc='', job_template=None)

	Session Processor class for processor on a session on XNAT

	
get_assessor(csess)

	Returns the assessor object depending on csess and the assessor label.

	Parameters

	csess – CachedImageSession object from XnatUtils

	Returns

	String of the assessor label

	
get_assessor_name(csess)

	Returns the label of the assessor

	Parameters

	csess – CachedImageSession object from XnatUtils

	Returns

	String of the assessor label

	
get_task(csess, upload_dir)

	Return the Task object

	Parameters

	
	csess – CachedImageSession from XnatUtils

	upload_dir – directory to put the data after run on the node

	Returns

	Task object of the assessor

	
has_inputs()

	Check to see that the session has the required inputs to run.

	Raises

	NotImplementedError if not overriden from base class.

	Returns

	None

	
should_run(session_dict)

	
	By definition, this should always run, so it just returns true

	with no checks

	Parameters

	session_dict – Dictionary of session information for
XnatUtils.list_experiments()

	Returns

	True

	
class dax.processors.AutoProcessor(xnat, yaml_source, user_inputs=None)

	Auto Processor class for AutoSpider using YAML files

	
get_assessor_input_types()

	Enumerate the assessor input types for this. The default implementation
returns an empty collection; override this method if you are inheriting
from a non-yaml processor.
:return: a list of input assessor types

	
get_cmds(assr, jobdir)

	Method to generate the spider command for cluster job.

	Parameters

	
	assessor – pyxnat assessor object

	jobdir – jobdir where the job’s output will be generated

	Returns

	command to execute the spider in the job script

	
get_proctype()

	Return the processor name for this processor. Override this method if
you are inheriting from a non-yaml processor.
:return: the name of the processor type

	
has_inputs(cobj)

	Method to check the inputs.

	By definition:

	status = 0 -> NEED_INPUTS, for session asr inputs and resources
status = 1 -> NEED_TO_RUN
status = -1 -> NO_DATA, for scan primary input isn’t usable
qcstatus needs a value only when -1 or 0.

You need to set qcstatus to a short string that explain
why it’s no ready to run. e.g: No NIFTI

	Parameters

	cobj – cached object define in dax.XnatUtils (Session or Scan)
(see XnatUtils in dax for information)

	Returns

	status, qcstatus

	
parse_session(csess, sessions)

	Method to run the processor parser on this session, in order to
calculate the pattern matches for this processor and the sessions
provided
:param csess: the active session. For non-longitudinal studies, this is
the session that the pattern matching is performed on. For longitudinal
studies, this is the ‘current’ session from which all prior sessions
are numbered for the purposes of pattern matching
:param sessions: the full, time-ordered list of sessions that should be
considered for longitudinal studies.
:return: None

	
should_run(obj_dict)

	Method to see if the assessor should appear in the session.

	Parameters

	obj_dict – Dictionary of information about the scan or sesion

	Returns

	True if it should run, false if it shouldn’t

dax.log – Logging utility

	
dax.log.setup_critical_logger(name, logfile)

	Sets up the critical logger

	Parameters

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns

	logger object

	
dax.log.setup_debug_logger(name, logfile)

	Sets up the debug logger

	Parameters

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns

	logger object

	
dax.log.setup_error_logger(name, logfile)

	Sets up the error logger

	Parameters

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns

	logger object

	
dax.log.setup_info_logger(name, logfile)

	Sets up the info logger

	Parameters

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns

	logger object

	
dax.log.setup_warning_logger(name, logfile)

	Sets up the warning logger

	Parameters

	
	name – Name of the logger

	logfile – file to store the log to. sys.stdout if no file define

	Returns

	logger object

dax.bin – Responsible for launching, building and updating a Task

File containing functions called by dax executables

	
dax.bin.build(settings_path, logfile, debug, projects=None, sessions=None, mod_delta=None, proj_lastrun=None)

	
	Method that is responsible for running all modules and putting assessors

	into the database

	Parameters

	
	settings_path – Path to the project settings file

	logfile – Full file of the file used to log to

	debug – Should debug mode be used

	projects – Project(s) that need to be built

	sessions – Session(s) that need to be built

	Returns

	None

	
dax.bin.check_default_keys(yaml_file, doc)

	Static method to raise error if key not found in dictionary from
yaml file.
:param yaml_file: path to yaml file defining the processor
:param doc: doc dictionary extracted from the yaml file

	
dax.bin.launch_jobs(settings_path, logfile, debug, projects=None, sessions=None, writeonly=False, pbsdir=None, force_no_qsub=False)

	Method to launch jobs on the grid

	Parameters

	
	settings_path – Path to the project settings file

	logfile – Full file of the file used to log to

	debug – Should debug mode be used

	projects – Project(s) that need to be launched

	sessions – Session(s) that need to be updated

	writeonly – write the job files without submitting them

	pbsdir – folder to store the pbs file

	force_no_qsub – run the job locally on the computer (serial mode)

	Returns

	None

	
dax.bin.load_from_file(filepath, args, logger, singularity_imagedir=None)

	Check if a file exists and if it’s a python file
:param filepath: path to the file to test
:return: True the file pass the test, False otherwise

	
dax.bin.pi_from_project(project)

	Get the last name of PI who owns the project on XNAT

	Parameters

	project – String of the ID of project on XNAT.

	Returns

	String of the PIs last name

	
dax.bin.raise_yaml_error_if_no_key(doc, yaml_file, key)

	Method to raise an execption if the key is not in the dict
:param doc: dict to check
:param yaml_file: YAMLfile path
:param key: key to search

	
dax.bin.read_yaml_settings(yaml_file, logger)

	Method to read the settings yaml file and generate the launcher object.

	Parameters

	yaml_file – path to yaml file defining the settings

	Returns

	launcher object

	
dax.bin.set_logger(logfile, debug)

	Set the logging depth

	Parameters

	
	logfile – File to log output to

	debug – Should debug depth be used?

	Returns

	logger object

	
dax.bin.update_tasks(settings_path, logfile, debug, projects=None, sessions=None)

	Method that is responsible for updating a Task.

	Parameters

	
	settings_path – Path to the project settings file

	logfile – Full file of the file used to log to

	debug – Should debug mode be used

	projects – Project(s) that need to be launched

	sessions – Session(s) that need to be updated

	Returns

	None

dax.XnatUtils – Collection of utilities for upload/download and general access

XnatUtils contains useful function to interface with XNAT using Pyxnat.

The functions are several categories:

1) Class Specific to XNAT and Spiders:
InterfaceTemp to create an interface with XNAT using a tempfolder
AssessorHandler to handle assessor label string and access object
SpiderProcessHandler to handle results at the end of any spider

	Methods to query XNAT database and get XNAT object :

	Methods to access/check objects on XNAT

	Methods to Download / Upload data to XNAT

	Other Methods

	Cached Class for DAX

	Old download functions still used in some spiders

	
class dax.XnatUtils.InterfaceTemp(xnat_host=None, xnat_user=None, xnat_pass=None, temp_dir=None)

	
	Extends the pyxnat.Interface class to make a temporary directory, write the

	cache to it and then blow it away on the Interface.disconnect call()
NOTE: This is deprecated in pyxnat 1.0.0.0

Using netrc to get username password if not given.

	
authenticate()

	Authenticate to XNAT.

Connect to XNAT and try to Disconnect the JSESSION before reconnecting.
Raise XnatAuthentificationError if it failes.

	Returns

	True or False

	
connect()

	Connect to XNAT.

	
disconnect()

	Disconnect the JSESSION and blow away the cache.

	Returns

	None

	
get_project_assessors(projectid)

	List all the assessors that you have access to based on passed project.

	Parameters

	projectid – ID of a project on XNAT

	Returns

	List of all the assessors for the project

	
get_project_scans(project_id, include_shared=True)

	List all the scans that you have access to based on passed project.

	Parameters

	
	intf – pyxnat.Interface object

	projectid – ID of a project on XNAT

	include_shared – include the shared data in this project

	Returns

	List of all the scans for the project

	
get_scans(projectid, subjectid, sessionid)

	
	List all the scans that you have access to based on passed

	session/subject/project.

	Parameters

	
	intf – pyxnat.Interface object

	projectid – ID of a project on XNAT

	subjectid – ID/label of a subject

	sessionid – ID/label of a session

	Returns

	List of all the scans

	
get_session_resources(projectid, subjectid, sessionid)

	
	Gets a list of all of the resources for a session associated to a

	subject/project requested by the user

	Parameters

	
	intf – pyxnat.Interface object

	projectid – ID of a project on XNAT

	subjectid – ID/label of a subject

	sessionid – ID/label of a session to get resources for

	Returns

	List of resources for the session

	
get_sessions(projectid=None, subjectid=None)

	
	List all the sessions either:

	

	that you have access to

	or

	
	in a single project (and single subject) based on kargs

	Parameters

	
	intf – pyxnat.Interface object

	projectid – ID of a project on XNAT

	subjectid – ID/label of a subject

	Returns

	List of sessions

	
class dax.XnatUtils.AssessorHandler(label)

	Class to intelligently deal with the Assessor labels.
Make the splitting of the strings easier.

	
get_proctype()

	Get the proctype from the assessor label

	Returns

	The proctype for the assessor

	
get_project_id()

	Get the project ID from the assessor label

	Returns

	The XNAT project label

	
get_scan_id()

	Get the scan ID from teh assessor label

	Returns

	The scan id for the assessor label

	
get_session_label()

	Get the session label from the assessor label

	Returns

	The XNAT session label

	
get_subject_label()

	Get the subject label from the assessor label

	Returns

	The XNAT subject label

	
is_valid()

	Check to see if we have a valid assessor label (aka not None)

	Returns

	True if valid, False if not valid

	
select_assessor(intf)

	Run Interface.select() on the assessor label

	Parameters

	intf – pyxnat.Interface object

	Returns

	The pyxnat EObject of the assessor

	
class dax.XnatUtils.SpiderProcessHandler(script_name, suffix, project=None, subject=None, experiment=None, scan=None, alabel=None, assessor_handler=None, time_writer=None, host=None)

	Class to handle the uploading of results for a spider.

	
add_file(filepath, resource)

	
	Add a file in the assessor in the upload directory based on the

	resource name as will be seen on XNAT

	Parameters

	
	filepath – Full path to a file to upload

	resource – The resource name it should appear under in XNAT

	Returns

	None

	
add_folder(folderpath, resource_name=None)

	Add a folder to the assessor in the upload directory.

	Parameters

	
	folderpath – Full path to the folder to upoad

	resource_name – Resource name chosen (if different than basename)

	Raises

	
	shutil.Error [https://docs.python.org/3/library/shutil.html#shutil.Error] – Directories are the same

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – The directory doesn’t exist

	Returns

	None

	
add_pdf(filepath)

	Add the PDF and run ps2pdf on the file if it ends with .ps

	Parameters

	filepath – Full path to the PDF/PS file

	Returns

	None

	
add_snapshot(snapshot)

	Add in the snapshots (for quick viewing on XNAT)

	Parameters

	snapshot – Full path to the snapshot file

	Returns

	None

	
clean(directory)

	Clean directory if no error and pdf created

	Parameters

	directory – directory to be cleaned

	
done()

	
	Create a flag file that the assessor is ready to be uploaded and set

	the status as READY_TO_UPLOAD

	Returns

	None

	
file_exists(fpath)

	Check to see if a file exists

	Parameters

	fpath – full path to a file to assert it exists

	Returns

	True if it exists, False if it doesn’t

	
folder_exists(fpath)

	Check to see if a folder exists

	Parameters

	fpath – Full path to a folder to assert it exists

	Returns

	True if it exists, False if it doesn’t

	
print_copying_statement(label, src, dest)

	Print a line that data is being copied to the upload directory

	Parameters

	
	label – The XNAT resource label

	src – Source directory or file

	dest – Destination directory or file

	Returns

	None

	
print_err(msg)

	Print error message using time writer if set, print otherwise

	Parameters

	msg – Message to print

	Returns

	None

	
print_msg(msg)

	Prints a message using TimedWriter or print

	Parameters

	msg – Message to print

	Returns

	None

	
set_assessor_status(status)

	Set the status of the assessor based on passed value

	Parameters

	status – Value to set the procstatus to

	Except

	All catchable errors.

	Returns

	None

	
set_error()

	Set the flag for the error to 1

	Returns

	None

	
class dax.XnatUtils.CachedImageSession(intf, proj, subj, sess)

	Enumeration for assessors function, to control what assessors are returned

	
assessors(select=(0,))

	Get a list of CachedImageAssessor objects for the XNAT session

	Returns

	List of CachedImageAssessor objects for the session.

	
full_object()

	Return a the full pyxnat Session object of this sessions

	Returns

	pyxnat Session object

	
get(name)

	Get the value of a variable name in the session

	Parameters

	name – The variable name that you want to get the value of

	Returns

	The value of the variable or ‘’ if not found.

	
get_resources()

	
	Return a list of dictionaries that correspond to the information

	for each resource

	Returns

	List of dictionaries

	
has_shared_project()

	Get the project if shared.

	Returns

	project_shared_id if shared, None otherwise

	
info()

	Get a dictionary of lots of variables that correspond to the session

	Returns

	Dictionary of variables

	
label()

	Get the label of the session

	Returns

	String of the session label

	
resources()

	Get a list of CachedResource objects for the session

	Returns

	List of CachedResource objects for the session

	
scans()

	Get a list of CachedImageScan objects for the XNAT session

	Returns

	List of CachedImageScan objects for the session.

	
session()

	Get the session associated with this object
:return: session asscoiated with this object

	
class dax.XnatUtils.CachedImageScan(intf, scan_element, parent)

	Class to cache the XML information for a scan on XNAT

	
get(name)

	Get the value of a variable associated with a scan.

	Parameters

	name – Name of the variable to get the value of

	Returns

	Value of the variable if it exists, or ‘’ otherwise.

	
get_resources()

	Get a list of dictionaries of info for each CachedResource.

	Returns

	List of dictionaries of infor for each CachedResource.

	
info()

	Get lots of variables assocaited with this scan.

	Returns

	Dictionary of infomation about the scan.

	
label()

	Get the ID of the scan

	Returns

	String of the scan ID

	
parent()

	Get the parent of the scan

	Returns

	XML String of the scan parent

	
resources()

	Get a list of the CachedResource (s) associated with this scan.

	Returns

	List of the CachedResource (s) associated with this scan.

	
session()

	Get the session associated with this object
:return: session asscoiated with this object

	
class dax.XnatUtils.CachedImageAssessor(intf, assr_element, parent)

	Class to cache the XML information for an assessor on XNAT

	
get(name)

	Get the value of a variable associated with the assessor

	Parameters

	name – Variable name to get the value of

	Returns

	Value of the variable, otherwise ‘’.

	
get_in_resources()

	
	Get a list of dictionaries of info for the CachedResource objects

	for “in” type

	Returns

	List of dictionaries of info for the CachedResource objects
for “in” type

	
get_out_resources()

	
	Get a list of dictionaries of info for the CachedResource objects

	for “out” type

	Returns

	List of dictionaries of info for the CachedResource objects
for “out” type

	
get_resources()

	Makes a call to get_out_resources.

	Returns

	List of dictionaries of info for the CachedResource objects
for “out” type

	
in_resources()

	Get a list of CachedResource objects for “in” type

	Returns

	List of CachedResource objects for “in” type

	
info()

	Get a dictionary of information associated with the assessor

	Returns

	None

	
label()

	Get the label of the assessor

	Returns

	String of the assessor label

	
out_resources()

	Get a list of CachedResource objects for “out” type

	Returns

	List of CachedResource objects for “out” type

	
parent()

	Get the parent element of the assessor (session)

	Returns

	The session element XML string

	
class dax.XnatUtils.CachedResource(element, parent)

	Class to cache resource XML info on XNAT

	
get(name)

	Get the value of a variable associated with the resource

	Parameters

	name – Variable name to get the value of

	Returns

	The value of the variable, ‘’ otherwise.

	
info()

	Get a dictionary of information relating to the resource

	Returns

	dictionary of information about the resource.

	
label()

	Get the label of the resource

	Returns

	String of the label of the resource

	
parent()

	Get the resource parent XML string

	Returns

	The resource parent XML string

DAX Manager

Table of Contents:

	About

	How to set it up

	How to add a Module

	How to add a Process

About

DAX Manager is a non-required tool hosted in REDCap which allows you to quickly generate settings files that can be
launched with DAX. This alleviates the need to manual write settings files and makes updating scan types, walltimes, etc
a much quicker and streamlined process.

How to set it up

The main instrument should be called General and contains a lot of standard variables that are required for DAX to
interface with DAX Manager appropriately. For convenience, a copy of the latest data dictionary has been included
and can be downloaded here for reference. It is suggested to use this version even if you do not plan on running all of the
spiders because it is currently being used in production files/dax_manager/XNATProjectSettings_DataDictionary_2016-01-21.csv.

How to add a Module

Variables used in a module must all start with the text immediately AFTER Module. For example, consider
“Module dcm2nii philips”. All of the variables for this module must start with “dcm2nii_philips_”. One required variable
is the “on” variable. This variable, again, in the case of “Module dcm2nii philips”, would be called “dcm2nii_philips_on”.
This is used to check to see if the module related to this record in REDCap should be run for your project or not. It must
also be of the yes/no REDCap type. If you do not have this variable included, you will get errors when you run dax_manager.
The second required variable is the “Module name” variable. In the case of “Module dcm2nii philips”, this variable is called
“dcm2nii_philips_mod_name”. This relates to the class name of the python module file. This information is stored in the
REDCap “Field Note” (See below).

[image: _images/dax_manager_module_field_note.png]

This variable must be a REDCap Text Box type (as do all other variables at this point). This must be entered in the
following format: “Default: <Module_Class_Name>”. All other variables that are used must also start with the “dcm2nii_philips_”
prefix and must match those of the module init.

Additionally, for the sake of user-friendliness, all variables should use REDCap’s branching logic to only appear if the
module is “on”. It is important to note that in all cases, the REDCap “Field Label” is not used in any automated fashion,
but should be something obvious to the users.

How to add a Process

Just like in the case of Modules, Processes follow a close formatting pattern. Similarly, all process variables should
start with the text immediately after “Process “. For this example, consider “Process Multi_Atlas”. Just like in the case
of the modules, the first variable should be a REDCap yes/no and should be called “multi_atlas_on”. The remainder of the
variables should all be of REDCap type “Text Box”. The next required variable is the “Processor Name” variable which must
be labeled with the “<Process Name>_proc_name” suffix. In the case of “Process Multi_Atlas”, this is called
“multi_atlas_proc_name”. Just like in the case of the Module, the class name of the processor should be entered in the REDCap
Field Note after “Default: “.

There are several other required variables which will be enumerated below (suffix listed first):

	_suffix_proc - Used to determine what the processor suffix (if any should be)

	_version - The version of the spider (1.0.0, 2.0.1 etc)

	_walltime - The amount of walltime to use for the spider when executed on the grid

	_mem_mb - The amount of ram to request for the job to run. Note this should be in megabytes

	_scan_types - If writing a ScanProcessor, this is required. If writing a SessionProcessor, this is not required. This, in the case of a ScanProcessor, is used to filter out the scan types that the processor will accept to run the spider on.

Just like in the case of a Module, all variables other than the “on” variable should use REDCap branching logic to only
be visible when the process is “on”.

Contributors

DAX is a multi-institution collaborative effort of the following labs:

MASI [https://masi.vuse.vanderbilt.edu/index.php/Main_Page/] at Vanderbilt University, Nashville, Tennessee, USA

Center for Cognitive Medicine [https://www.vumc.org/ccm/] at Vanderbilt University, Nashville, Tennessee, USA

TIG [http://cmictig.cs.ucl.ac.uk/] at UCL (University College London), London, UK

How To Contribute

We encourage all collaborations! However, we follow a pull-request work flow to help facilitate a simplified code-review process.
If you would like to contribute, we kindly request that any of your work be done in
a branch. Rules for branching and merging are outlined below:

	Branches - The scope of your branch should be narrow. Do not make a branch only for changing documentation, and then refactor how task.py works. These should be two totally separate branches.

	Testing - You should test your branch before making a pull request. Do not make a pull request with untested code.

	Committing - Use helpful commit messages. Do not use messages like “updates”, “bug fix”, and “updated a few files” etc. Please make these commit messages at least somewhat helpful. Use lots of commits, do not make 1 bulk commit of all of the changes that you make. This practice makes it hard for others to review.

	Pull request - When you are ready to make a pull request, please try to itemize all of the changes that you made in at least moderate depth. This will alert everyone reviewing the code of possible things to check to make sure that you didn’t break anything.

	Merging - Do NOT merge your own pull request. Contributors should review each and every pull request before merging into the master branch. Please allow at least a few days before commenting and asking for status. If the depth of changes is deep, please allow at least a few weeks.

	Master branch - NEVER commit to the master branch directly unless there is a serious bug fix.

If you are unfamiliar with branches in github, please see the link below:

Working with Branches [https://help.github.com/articles/using-pull-requests/]

FAQ

These FAQs assume that you have read the XNAT documentation and or are familiar with navigating through the web UI.
If you are not, you can read the XNAT documentation here [https://wiki.xnat.org/display/XNAT16/Home/].

	
	What is DAX?

	DAX is an open source project that uses the pyxnat wrapper for the REST api to automate pipeline running on a DRMAA complaint grid.

	
	What are Modules?

	Modules are a special class in DAX. They represent, generally, a task that should not be preformed on the grid. The purpose for this was to not fill up the grid queue with jobs that take 20-30 seconds. Examples of such tasks could be converting a DICOM to a NIfTI file, changing the scan type, archiving a session from the prearchive, or performing skull-stripping. As you can see, these tasks can all be considered “light-weight” and thus probably dont have a place on the grid.

	
	What are Spiders?

	Spiders are a python script. The purpose of the script is to download data from XNAT, run an image processing pipeline, and then prepare the data to be uploaded to XNAT. Spiders are run on the grid because they can take hours to days.

	
	My assessor says “NO_DATA”. What does that mean?

	An assessor procstatus of NO_DATA means that the job will never run, but the assessor is showing up to remind you that you set this spider to always run. For example, if you have a process that runs a pipeline and the can types don’t exist in the session, the status would be NO_DATA. However, if at some later point you upload these scans back to the session, you will need to change the procstatus of the corresponding assessor to NO_DATA. This will not automatically be done for you.

	
	My assessor says “NEED_INPUTS”. What does that mean?

	An assessor procstatus of NEED_INPUTS means that something required for the job to run does not exist yet. Or more simply, the run dependencies have not yet been met. Such dependencies could be another assessor being completed and QA’d, waiting for a manually labeled ROI to be uploaded to a resource, or a custom conversion of an EDAT file.

	
	My assessor says “JOB_FAILED”. What does that mean?

	An assessor procstatus means that somehow your job failed on the grid. There are many different reasons why this could have happened. Your best bet is to consult the OUTLOG resource of the assesor. This will be the full log of what was printed to STDOUT and STDERR. If the OUTLOG resource doesn’t exist yet, it has not yet been uploaded, but wil be automatically uploaded shortly.

	
	How do I know the EXACT command line call that was made?

	The PBS resource contains the script that was submitted to the grid scheduler for execution. You can view this file for the exact command line call(s) that were executed on the grid.

	
	I think I found a bug, what should I do?

	The easiest way to get a bug fixed is to post as much information as you can on the DAX github issue tracker [https://github.com/VUIIS/dax/issues]. If possible, please post the command line call you made (with any sensitive information removed) and the stack trace or error log in question.

	
	I have an idea of something I want to add. How do I go about adding it?

	Great! We’d love to see what you have to include! Please read the guidelines on how to contribute

DAX Processors

About

DAX pipelines are defined by creating YAML text files. If you are not familiar with YAML, start here:
https://learnxinyminutes.com/docs/yaml/.

A processor YAML file defines the Environment, Inputs, Commands, and Outputs of your pipeline.

Processor Repos

There are several existing processors that can be used without modification. The processors in these
repositories can also provide valuable examples.

https://github.com/bud42/dax-processors

https://github.com/MASILab/yaml_processors

Overview

The processor file defines how a script to run a pipeline should be created. DAX will use the processor to generate scripts to be submitted to your cluster as jobs. The script will contain the
commands to download the inputs from XNAT, run the pipeline, and prepare the results to be uploaded back to XNAT (the actual uploading is performed by DAX via dax upload).

A “Simple” Example

moreauto: true
inputs:
 default:
 container_path: MRIQA_v1.0.0.simg
 xnat:
 scans:
 - name: scan_t1
 types: MPRAGE
 resources:
 - resource: NIFTI
 ftype: FILE
 varname: t1_nifti
outputs:
 - path: stats.txt
 type: FILE
 resource: STATS
 - path: report.pdf
 type: FILE
 resource: PDF
 - path: DATA
 type: DIR
 resource: DATA
command: >-
 singularity
 run
 --bind $INDIR:/INPUTS
 --bind $OUTDIR:/OUTPUTS
 {container_path}
 --t1_nifti /INPUTS/{t1_nifti}
attrs:
 walltime: '36:00:00'
 memory: 8192

Parts of the Processor YAML

All processor YAML files should start with these two lines:

moreauto: true

The primary components of a processor YAML file are:

	inputs

	outputs

	command

	attrs

Each of these components is required.

inputs

The inputs section defines the files and parameters to be prepared for the pipeline. Currently, the only subsections of inputs supported are defaults and xnat.

The defaults subsection can contain paths to local resources such as singularity containers, local codebases, local data to be used by the pipeline. It can essentially contain any value
that needs to be passed directly to the command template (see below).

The xnat section defines the files, directories or values that are extracted from XNAT and passed to the command. Currently, the subsections of xnat that are supported are scans, assessors, attrs, and filters. Each of these subsections contains an array with a specific set of fields for each item in the array.

xnat scans

Each xnat scans item requires a types field. The types field is used to match against the scan type attribute on XNAT. The value can be a single string or a comma-separated list. Wildcards are also supported.

By default, any scan that matches will be included. You can exclude scans with a quality of unusable on XNAT by including the field needs_qc with value of True. The default is to run anything, i.e. value of False.
Note that questionable is treated the same as usable, so they’ll always run.

The resources subsection of each xnat scan should contain a list of resources to download from the matched scan. Each resource requires fields for ftype and var.

ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download individual files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained. DIRJ will also download the directory but strips extraneous intermediate directories from the produced path as implemented by the -j flag of unzip.

The var field defines the tag to be replaced in the command string template (see below).

Optional fields for a resource are fmatch and fcount. fmatch defines a regular expression to apply to filter the list of filenames in the resource. fcount can be used to limit the number of files matched. By default, only 1 file is downloaded.

xnat assessors

Each xnat assessor item requires a proctype field. The proctype field is used to match against the assessor proctype attribute on XNAT. The value can be a single string or a comma-separated list. Wildcards are also supported.

By default, any assessor that matches proctype will be included. If you want to only run if an assessor is “good”, you set needs_qc to True, This will not include assessors with an XNAT qcstatus of “NEEDS_QA”. It will run on “Passed”, “Good”, etc. A qcstatus that’s “bad” or “Failed” will also be excluded.

The resources subsection of each xnat assessor should contain a list of resources to download from the matched scan. Each resource requires fields for ftype and var.

The ftype specifies what type to downloaded from the resource, either FILE, DIR, or DIRJ. FILE will download individual files from the resource. DIR will download the whole directory from the resource with the hierarchy maintained. DIRJ will also download the directory but strips extraneous intermediate directories from the produced path as impelemented by the “-j” flag of unzip.

The var field defines the tag to be replaced in the command string template (see below).

Optional fields for a resource are fmatch, fdest and fcount. fmatch defines a regular expression to apply to filter the list of filenames in the resource. fcount can be used to limit the number of files matched. By default, only 1 file is downloaded.
The inputs for some containers are expected to be in specific locations with specific filenames. This is accomplished using the fdest field. The file or directory gets copied to /INPUTS and renamed to the name specified in fdest.

xnat attrs

You can evaluate attributes at the subject, session, or scan level. Any fields that are accessible via the XNAT API can be queried. Each attrs item should contain a varname, object, and attr.
varname specifies the tag to be replaced in the command string template. object is the XNAT object type to query and can be either subject, session, or scan. attr is the XNAT field to query. If the object type is scan, then a scan name from the xnat scans section must be included with the ref field.

For example:

attrs:
 - varname: project
 object: session
 attr: project

This will extract the value of the project attribute from the session object and replace {project} in the command template.

xnat filters

filters allows you to filter a subset of the cartesian product of the matched scans and assessors. Currently, the only filter implemented is a match filter. It will only create the assessors where the specified list of inputs match. This is used when you want to link a set of assessors that all use the same initial scan as input.

For example:

filters:
 - type: match
 inputs: scan_t1,assr_freesurfer/scan_t1

This will tell DAX to only run this pipeline where the value for scan_t1 and assr_freesurfer/scan_t1 are the same scan.

outputs

The outputs section defines a list files or directories to be uploaded to XNAT upon completion of the pipeline. Each output item must contain fields path, type, and resource. The path value contains the local relative path of the file or directory to be uploaded. The type of the path should either be FILE or DIR. The resource is the name of resource of the assessor created on XNAT where the output is to be uploaded.

For every processor, a PDF output with resource named PDF is required and must be of type FILE.

command

The command field defines a string template that is formatted using the values from inputs.

Each tag specified inside curly braces (“{}”“) corresponds to a field in the defaults input section, or to a var field from a resource on an input or to a varname in the xnat attrs section.

Not all var must be used.

attrs

The attrs section defines miscellaneous other attributes including cluster parameters. These values replace tags in the jobtemplate.

jobtemplate

The jobtemplate is a text file that contains a template to create a batch job script.

Versioning

By default, name and version are parsed from the container file name, based on the format:
<NAME>_v<major.minor.revision>.simg where<NAME>_v<major> is the proctype.

The YAML file can override these by using any of the top level fields procversion, procname, and/or proctype. procversion specifies the major.minor.revision, e.g. 1.0.2. procname specifies the name only without version, e.g. mprage. proctype is the name and major version, e.g. mprage_v1.
If only procname is specified, the version is parsed from the container name.
If only procversion is specified, the name is parsed from the container name.
If proctype is specified, it will override everything else to determine proctype.

Notes on Singularity run options

–cleanenv avoids env confusion. However we need to avoid –contain for the most part, because it removes access to temp space on the host that many spiders will need, e.g. Freesurfer and /dev/shm. For compiled Matlab spiders (at least), we need to provide –home $INDIR to avoid .mcrCache collisions in temp space when multiple spiders are running.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dax	

 	
 	
 dax.bin	

 	
 	
 dax.log	

 	
 	
 dax.processors	

 	
 	
 dax.spiders	

 	
 	
 dax.task	

 	
 	
 dax.XnatUtils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | X

A

 	
 	add_file() (dax.XnatUtils.SpiderProcessHandler method)

 	add_folder() (dax.XnatUtils.SpiderProcessHandler method)

 	add_pdf() (dax.XnatUtils.SpiderProcessHandler method)

 	add_snapshot() (dax.XnatUtils.SpiderProcessHandler method)

 	
 	AssessorHandler (class in dax.XnatUtils)

 	assessors() (dax.XnatUtils.CachedImageSession method)

 	authenticate() (dax.XnatUtils.InterfaceTemp method)

 	AutoProcessor (class in dax.processors)

 	AutoSpider (class in dax.spiders)

B

 	
 	batch_path() (dax.task.ClusterTask method)

 	(dax.task.XnatTask method)

 	build() (in module dax.bin)

 	build_cmds() (dax.processors.Processor method)

 	
 	build_commands() (dax.task.ClusterTask method)

 	(dax.task.XnatTask method)

 	build_task() (dax.task.ClusterTask method)

 	(dax.task.XnatTask method)

C

 	
 	CachedImageAssessor (class in dax.XnatUtils)

 	CachedImageScan (class in dax.XnatUtils)

 	CachedImageSession (class in dax.XnatUtils)

 	CachedResource (class in dax.XnatUtils)

 	check_date() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	check_default_keys() (in module dax.bin)

 	check_executable() (dax.spiders.Spider method)

 	check_job_usage() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	
 	check_running() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	clean() (dax.XnatUtils.SpiderProcessHandler method)

 	ClusterTask (class in dax.task)

 	commands() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	connect() (dax.XnatUtils.InterfaceTemp method)

 	copy_input() (dax.spiders.AutoSpider method)

 	copy_inputs() (dax.spiders.AutoSpider method)

 	copy_local_input() (dax.spiders.AutoSpider method)

 	copy_xnat_input() (dax.spiders.AutoSpider method)

D

 	
 	dax (module)

 	dax.bin (module)

 	dax.log (module)

 	dax.processors (module)

 	dax.spiders (module)

 	dax.task (module)

 	dax.XnatUtils (module)

 	default_settings_spider() (dax.processors.Processor method)

 	
 	define_spider_process_handler() (dax.spiders.ScanSpider method)

 	(dax.spiders.SessionSpider method)

 	(dax.spiders.Spider method)

 	disconnect() (dax.XnatUtils.InterfaceTemp method)

 	done() (dax.XnatUtils.SpiderProcessHandler method)

 	download() (dax.spiders.Spider method)

 	download_inputs() (dax.spiders.Spider method)

 	download_xnat_file() (dax.spiders.AutoSpider method)

 	download_xnat_resource() (dax.spiders.AutoSpider method)

E

 	
 	end() (dax.spiders.AutoSpider method)

 	(dax.spiders.Spider method)

F

 	
 	file_exists() (dax.XnatUtils.SpiderProcessHandler method)

 	finish() (dax.spiders.AutoSpider method)

 	(dax.spiders.ScanSpider method)

 	(dax.spiders.SessionSpider method)

 	(dax.spiders.Spider method)

 	
 	folder_exists() (dax.XnatUtils.SpiderProcessHandler method)

 	full_object() (dax.XnatUtils.CachedImageSession method)

G

 	
 	get() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	(dax.XnatUtils.CachedResource method)

 	get_argparser() (dax.spiders.AutoSpider method)

 	get_assessor() (dax.processors.ScanProcessor method)

 	(dax.processors.SessionProcessor method)

 	get_assessor_input_types() (dax.processors.AutoProcessor method)

 	(dax.processors.Processor method)

 	get_assessor_name() (dax.processors.ScanProcessor method)

 	(dax.processors.SessionProcessor method)

 	get_cmds() (dax.processors.AutoProcessor method)

 	get_createdate() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_data_dict() (dax.spiders.Spider static method)

 	get_exe_version() (dax.spiders.Spider method)

 	get_in_resources() (dax.XnatUtils.CachedImageAssessor method)

 	get_job_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	get_job_usage() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_jobid() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_jobnode() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_jobstartdate() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_memused() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_out_resources() (dax.XnatUtils.CachedImageAssessor method)

 	
 	get_processor_name() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_processor_version() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_proctype() (dax.processors.AutoProcessor method)

 	(dax.XnatUtils.AssessorHandler method)

 	(dax.processors.Processor method)

 	get_project_assessors() (dax.XnatUtils.InterfaceTemp method)

 	get_project_id() (dax.XnatUtils.AssessorHandler method)

 	get_project_scans() (dax.XnatUtils.InterfaceTemp method)

 	get_qcstatus() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_resources() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	get_scan_id() (dax.XnatUtils.AssessorHandler method)

 	get_scans() (dax.XnatUtils.InterfaceTemp method)

 	get_session_label() (dax.XnatUtils.AssessorHandler method)

 	get_session_resources() (dax.XnatUtils.InterfaceTemp method)

 	get_sessions() (dax.XnatUtils.InterfaceTemp method)

 	get_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_statuses() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_subject_label() (dax.XnatUtils.AssessorHandler method)

 	get_task() (dax.processors.ScanProcessor method)

 	(dax.processors.SessionProcessor method)

 	get_walltime() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	get_xnat_dict() (dax.spiders.Spider method)

 	go() (dax.spiders.AutoSpider method)

H

 	
 	has_inputs() (dax.processors.AutoProcessor method)

 	(dax.processors.Processor method)

 	(dax.processors.ScanProcessor method)

 	(dax.processors.SessionProcessor method)

 	
 	has_shared_project() (dax.XnatUtils.CachedImageSession method)

 	has_spider_handler() (dax.spiders.Spider method)

I

 	
 	in_resources() (dax.XnatUtils.CachedImageAssessor method)

 	info() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	(dax.XnatUtils.CachedResource method)

 	
 	InterfaceTemp (class in dax.XnatUtils)

 	is_open() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	is_valid() (dax.XnatUtils.AssessorHandler method)

 	is_xnat_uri() (dax.spiders.AutoSpider method)

L

 	
 	label() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	(dax.XnatUtils.CachedResource method)

 	
 	launch() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	launch_jobs() (in module dax.bin)

 	load_from_file() (in module dax.bin)

M

 	
 	merge_pdf_pages() (dax.spiders.Spider method)

O

 	
 	out_resources() (dax.XnatUtils.CachedImageAssessor method)

 	outlog_path() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

P

 	
 	parent() (dax.XnatUtils.CachedImageAssessor method)

 	(dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedResource method)

 	parse_session() (dax.processors.AutoProcessor method)

 	pbs_path() (dax.task.Task method)

 	pi_from_project() (in module dax.bin)

 	plot_images_page() (dax.spiders.Spider method)

 	plot_stats_page() (dax.spiders.Spider method)

 	pre_run() (dax.spiders.AutoSpider method)

 	(dax.spiders.ScanSpider method)

 	(dax.spiders.SessionSpider method)

 	(dax.spiders.Spider method)

 	print_args() (dax.spiders.AutoSpider method)

 	(dax.spiders.Spider method)

 	
 	print_copying_statement() (dax.XnatUtils.SpiderProcessHandler method)

 	print_end() (dax.spiders.AutoSpider method)

 	(dax.spiders.Spider method)

 	print_err() (dax.spiders.Spider method)

 	(dax.XnatUtils.SpiderProcessHandler method)

 	print_info() (dax.spiders.Spider method)

 	print_init() (dax.spiders.Spider method)

 	print_msg() (dax.spiders.Spider method)

 	(dax.XnatUtils.SpiderProcessHandler method)

 	print_stderr_message() (dax.spiders.TimedWriter method)

 	print_timed_message() (dax.spiders.TimedWriter method)

 	Processor (class in dax.processors)

R

 	
 	raise_yaml_error_if_no_key() (in module dax.bin)

 	read_yaml_settings() (in module dax.bin)

 	ready_flag_exists() (dax.task.Task method)

 	reproc_processing() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	resources() (dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	
 	run() (dax.spiders.AutoSpider method)

 	(dax.spiders.ScanSpider method)

 	(dax.spiders.SessionSpider method)

 	(dax.spiders.Spider method)

 	run_cmd_args() (dax.spiders.Spider method)

 	run_system_cmd() (dax.spiders.Spider method)

S

 	
 	ScanProcessor (class in dax.processors)

 	scans() (dax.XnatUtils.CachedImageSession method)

 	ScanSpider (class in dax.spiders)

 	select_assessor() (dax.XnatUtils.AssessorHandler method)

 	select_obj() (dax.spiders.Spider method)

 	select_str() (dax.spiders.Spider static method)

 	session() (dax.XnatUtils.CachedImageScan method)

 	(dax.XnatUtils.CachedImageSession method)

 	SessionProcessor (class in dax.processors)

 	SessionSpider (class in dax.spiders)

 	set_assessor_status() (dax.XnatUtils.SpiderProcessHandler method)

 	set_createdate() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_createdate_today() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_error() (dax.XnatUtils.SpiderProcessHandler method)

 	set_jobid() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_jobnode() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_jobstartdate() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_jobstartdate_today() (dax.task.Task method)

 	set_launch() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	
 	set_logger() (in module dax.bin)

 	set_memused() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_proc_and_qc_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_qcstatus() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_spider_settings() (dax.processors.Processor method)

 	set_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	set_walltime() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	setup_critical_logger() (in module dax.log)

 	setup_debug_logger() (in module dax.log)

 	setup_error_logger() (in module dax.log)

 	setup_info_logger() (in module dax.log)

 	setup_warning_logger() (in module dax.log)

 	should_run() (dax.processors.AutoProcessor method)

 	(dax.processors.Processor method)

 	(dax.processors.ScanProcessor method)

 	(dax.processors.SessionProcessor method)

 	Spider (class in dax.spiders)

 	SpiderProcessHandler (class in dax.XnatUtils)

T

 	
 	Task (class in dax.task)

 	
 	TimedWriter (class in dax.spiders)

U

 	
 	undo_processing() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	update_status() (dax.task.ClusterTask method)

 	(dax.task.Task method)

 	(dax.task.XnatTask method)

 	
 	update_tasks() (in module dax.bin)

 	upload() (dax.spiders.Spider method)

 	upload_dict() (dax.spiders.Spider method)

 	upload_outlog_dir() (dax.task.ClusterTask method)

 	upload_pbs_dir() (dax.task.ClusterTask method)

X

 	
 	XnatTask (class in dax.task)

Tutorials

 _images/dax_manager_module_field_note.png
Edit Field

‘You may add a new project feld o this data collection instrument by completing the fields below and clicking the Save button at the
bottom. When you add a new field, it will be added to the form on this page. For an overview of the different field types available,

you may view the 33 Eield Types video (4 i

Field Type: | Text Box (Short Text, Number, Date/Time, ..

Field Label
Module Name:

Howto use Piping

Field Annotation (optons)) Learm about Action Tags

[——————]

Variable Name (uized during data export)

demznil_philips_mod_name
(ONLY etes, umbers, and underscares.

() Ensble suo naming,
U ol varsbe basea
uponisField Laber?

Validation? (cptions) | — None -— v
o
Enable searching within biomedical ontology [

— choose ontology to search - -

Required2* ® No () Yes
*Promp i fieldis lank.

Identifier? ® No () Yes
‘Does thefsl contain deniying nformstion (., name, SSN, adres)?

Custom Alignment | Right / Vertical (RV) ¥
Align e posiionof the fedcn the pge

Field Note (optiona)) | Default: Module_dcm2ni_philips
‘Small reminder et displayed underneath Fiold

save || Cancel

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to DAX’s documentation!

 		
 DAX Installation

 		
 Table of Contents:

 		
 Requirements

 		
 For Linux user

 		
 For Mac user

 		
 Warnings

 		
 Install DAX

 		
 Install for Linux user

 		
 Install for Mac user

 		
 No Sudo access

 		
 Verify the installation

 		
 Programming in python

 		
 Installation of fs:fsData and proc:genProcData

 		
 On XNAT VM:

 		
 ON XNAT webapp:

 		
 Source Documentation

 		
 dax – Root package

 		
 dax.task – Task class

 		
 dax.spiders – Spider class

 		
 dax.processors – Processor class

 		
 dax.log – Logging utility

 		
 dax.bin – Responsible for launching, building and updating a Task

 		
 dax.XnatUtils – Collection of utilities for upload/download and general access

 		
 DAX Manager

 		
 Table of Contents:

 		
 About

 		
 How to set it up

 		
 How to add a Module

 		
 How to add a Process

 		
 Contributors

 		
 How To Contribute

 		
 FAQ

 		
 DAX Processors

 		
 About

 		
 Processor Repos

 		
 Overview

 		
 A “Simple” Example

 		
 Parts of the Processor YAML

 		
 inputs

 		
 xnat scans

 		
 xnat assessors

 		
 xnat attrs

 		
 xnat filters

 		
 outputs

 		
 command

 		
 attrs

 		
 jobtemplate

 		
 Versioning

 		
 Notes on Singularity run options

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

